The Mathematical Institute, University of Oxford, Eprints Archive

Modeling chemotaxis reveals the role of reversed phosphotransfer & a bi-functional kinase-phosphatase

Tindall, M. J. and Porter, S. L. and Maini, P. K. and Armitage, J. P. (2010) Modeling chemotaxis reveals the role of reversed phosphotransfer & a bi-functional kinase-phosphatase. PLO Computational Biology, 6 (8). 10 pages.

[img]
Preview
PDF
524Kb
[img]
Preview
PDF
89Kb
[img]
Preview
PDF
89Kb
[img]
Preview
PDF
8Kb
[img]
Preview
PDF
19Kb

Abstract

Understanding how multiple signals are integrated in living cells to produce a balanced response is a major challenge in biology. Two-component signal transduction pathways, such as bacterial chemotaxis, comprise histidine protein kinases (HPKs) and response regulators (RRs). These are used to sense and respond to changes in the environment. Rhodobacter sphaeroides has a complex chemosensory network with two signaling clusters, each containing a HPK, CheA. Here we demonstrate, using a mathematical model, how the outputs of the two signaling clusters may be integrated. We use our mathematical model supported by experimental data to predict that: (1) the main RR controlling flagellar rotation, CheY6, aided by its specific phosphatase, the bifunctional kinase CheA3, acts as a phosphate sink for the other RRs; and (2) a phosphorelay pathway involving CheB2 connects the cytoplasmic cluster kinase CheA3 with the polar localised kinase CheA2, and allows CheA3-P to phosphorylate non-cognate chemotaxis RRs. These two mechanisms enable the bifunctional kinase/phosphatase activity of CheA3 to integrate and tune the sensory output of each signaling cluster to produce a balanced response. The signal integration mechanisms identified here may be widely used by other bacteria, since like R. sphaeroides, over 50% of chemotactic bacteria have multiple cheA homologues and need to integrate signals from different sources.

Item Type:Article
Subjects:A - C > Biology and other natural sciences
Research Groups:Centre for Mathematical Biology
ID Code:969
Deposited By:Philip Maini
Deposited On:16 Sep 2010 07:52
Last Modified:16 Sep 2010 07:52

Repository Staff Only: item control page