Homogenization for advection-diffusion in a perforated domain

by

P H Haynes and V H Hoang and J R Norris and K C Zygalakis
Homogenization for advection-diffusion in a perforated domain

P H Haynes and V H Hoang and J R Norris and K C Zygalakis

Abstract

The volume of a Wiener sausage constructed from a diffusion process with periodic, mean-zero, divergence-free velocity field, in dimension 3 or more, is shown to have a non-random and positive asymptotic rate of growth. This is used to establish the existence of a homogenized limit for such a diffusion when subject to Dirichlet conditions on the boundaries of a sparse and independent array of obstacles. There is a constant effective long-time loss rate at the obstacles. The dependence of this rate on the form and intensity of the obstacles and on the velocity field is investigated. A Monte Carlo algorithm for the computation of the volume growth rate of the sausage is introduced and some numerical results are presented for the Taylor–Green velocity field.

1.1 Introduction

We consider the problem of the existence and characterization of a homogenized limit for advection-diffusion in a perforated domain. This problem was initially motivated for us as a model for the transport of water vapour in the atmosphere, subject to molecular diffusion and turbulent advection, where the vapour is also lost by condensation on suspended ice crystals. It is of interest to determine the long-time rate of loss and in particular whether this is strongly affected by the advection. In this article we address a simple version of this set-up, where the

a Supported by a David Crighton Fellowship and by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
advection is periodic in space and constant in time and where the ice crystals remain fixed in space.

Let \(K \) be a compact subset of \(\mathbb{R}^d \) of positive Newtonian capacity. We assume throughout that \(d \geq 3 \). Let \(\rho \in (0, \infty) \). We consider eventually the limit \(\rho \to 0 \). Construct a random perforated domain \(D \subseteq \mathbb{R}^d \) by removing all the sets \(K + p \), where \(p \) runs over the support \(P \) of a Poisson random measure \(\mu \) on \(\mathbb{R}^d \) of intensity \(\rho \). Let \(v \) be a \(\mathbb{Z}^d \)-periodic, Lipschitz, mean-zero, divergence-free vector field on \(\mathbb{R}^d \). Our aim is to determine the long-time behaviour, over times of order \(\sigma^2 = \rho^{-1} \), of advection-diffusion in the domain \(D \) corresponding to the operator

\[
\mathcal{L} = \frac{1}{2} \Delta + v(x) \nabla
\]

with Dirichlet boundary conditions. It is well known (see Section 1.2) that the long-time behaviour of advection-diffusion in the whole space \(\mathbb{R}^d \) can be approximated by classical, homogeneous, heat-flow, with a constant diffusivity matrix \(\bar{a} = \bar{a}(v) \). The effect of placing Dirichlet boundary conditions on the sets \(K + p \) is to induce a loss of heat. The homogenization problem in a perforated domain has been considered already in the case of Brownian motion [5], [7], [12], [15] and Brownian motion with constant drift [3]. The novelty here is to explore the possible interaction between inhomogeneity in the drift and in the domain. We will show that as \(\rho \to 0 \) there exists an effective constant loss rate \(\lambda(v, K) \) in the time-scale \(\sigma^2 \). We will also identify the limiting values of \(r^{2-d} \lambda(v, rK) \) as \(r \to 0 \) and \(r \to \infty \) and we will compute numerically this function of \(r \) for one choice of \(v \) and \(K \).

Fix a function \(f \in L^2(\mathbb{R}^d) \). Write \(u = u(t, x) \) for the solution to the Cauchy problem for \(\mathcal{L} \) in \([0, \infty) \times D \) with initial data \(f \), and with Dirichlet conditions on the boundary of \(D \). Thus, for suitably regular \(K \) and \(f \), \(u \) is continuous on \([0, \infty) \times D \) and on \((0, \infty) \times \overline{D} \), and is \(C^{1,2} \) on \((0, \infty) \times D \); we have \(u(0, x) = f(x) \) for all \(x \in D \) and

\[
\frac{\partial u}{\partial t} = \frac{1}{2} \Delta u + v(x) \nabla u \quad \text{on} \quad (0, \infty) \times D.
\]

We shall study the behaviour of \(u \) over large scales in the limit \(\rho \to 0 \). Our analysis will rest on the following probabilistic representation of \(u \). Let \(X \) be a diffusion process in \(\mathbb{R}^d \), independent of \(\mu \) with generator \(\mathcal{L} \)

1 All results to follow extend to the case of the operator \(\frac{1}{2} \mathrm{div} a \nabla + v(x) \nabla \), where \(a \) is a constant positive-definite symmetric matrix, by a straightforward scaling transformation. We simplify the presentation by taking \(a = I \). Results for the case \(a = \epsilon^2 I \) are stated in Section 1.7 for easy reference.
Homogenization for advection-diffusion in a perforated domain

starting from \(x \). Such a process can be realised by solving the stochastic differential equation

\[
dX_t = dW_t + v(X_t)dt, \quad X_0 = x
\]

driven by a Brownian motion \(W \) in \(\mathbb{R}^d \). Set

\[
T = \inf\{t \geq 0 : X_t \in K + P\}.
\]

Then

\[
u(t, x) = \mathbb{E}_x \left(f(X_t) 1_{\{T > t\}} \right).
\]

The key step is to express the right hand side of this identity in terms of an analogue for \(X \) of the Wiener sausage. Associate to each path \(\gamma \in C([0, \infty), \mathbb{R}^d) \) and to each interval \(I \subseteq [0, \infty) \) a set

\[
S^K_t(\gamma) = \bigcup_{t \in I} (K + \gamma_t) = \{x \in \mathbb{R}^d : x - \gamma_t \in K \text{ for some } t \in I\}.
\]

Write \(S^K_t \) for the random set \(S^K_{[0,t]}(X) \) and write \(|S^K_t| \) for the Lebesgue volume of \(S^K_t \). We call \(S^K_t \) the diffusion sausage or \((X, K)\)-sausage and refer to \(K \) as the cross section. Then \(T > t \) if and only if \(\mu(S^K_t) = 0 \), where \(K = \{-x : x \in K\} \). Hence

\[
u(t, x) = \mathbb{E}_x \left(f(X_t) 1_{\{\mu(S^K_t) = 0\}} \right)
\]

and so, by Fubini, we obtain the formulae

\[
\mathbb{E}(\nu(t, x)) = \mathbb{E}_x \left(f(X_t) \exp(-\rho|S^K_t|) \right)
\]

(1.2)

and

\[
\mathbb{E}(\nu(t, x)^2) = \mathbb{E}_x \left(f(X_t)f(Y_t) \exp(-\rho|S^K_t(\gamma) \cup S^K_t(Y)|) \right)
\]

(1.3)

where \(Y \) is an independent copy of \(X \).

In the next section we review the homogenization theory for \(\mathcal{L} \) in the whole space. Then, in Section 1.3 we show, as a straightforward application of Kingman’s subadditive ergodic theorem, that the sausage volume \(|S^K_t| \) has almost surely an asymptotic growth rate \(\gamma(v, K) \), which is non-random. In Section 1.4 we make some further preparatory estimates on diffusion sausages. Then in Section 1.5 we identify the limiting values of \(r^{2-d}\gamma(v, rK) \) as \(r \to 0 \) and as \(r \to \infty \). In Section 1.6, we use the formulæ (1.2), (1.3) to deduce the existence of a homogenized scaling limit for the function \(\nu \), and we prove a corresponding weak limit for the diffusion process \(X \) and the hitting time \(T \). We shall see in particular that
for large obstacles it is the effective diffusivity \(\bar{a} \) which accounts for the loss of heat in the obstacles. On the other hand, when the obstacles are small, the loss of heat is controlled instead by the molecular diffusivity, even over scales where the diffusive motion itself is close to its homogenized limit. Some results for non-unit molecular diffusivity are recorded in Section 1.7. Finally, in Section 1.8, we describe a new Monte Carlo algorithm to compute the volume growth rate for the \((X, K)\)-sausage, and hence the effective long-time rate of loss of heat. We present some numerical results obtained using the algorithm which interpolate between our theoretical predictions for large and small obstacles.

1.2 Review of homogenization for diffusion with periodic drift

There is a well known homogenization theory for \(\mathcal{L} \)-diffusion in the whole space \(\mathbb{R}^d \). See [1], [2], [6], [11]. We review here a few basic facts which provide the background for our treatment of the case of a perforated domain. Our hypotheses on \(v \) ensure the existence of a periodic, Lipschitz, antisymmetric 2-tensor field \(\beta \) on \(\mathbb{R}^d \) such that \(\frac{1}{2} \text{div} \beta = v \). So we can write \(\mathcal{L} \) in the form

\[
\mathcal{L} = \frac{1}{2} \text{div}(I + \beta(x))\nabla.
\]

Then \(\mathcal{L} \) has a continuous heat kernel \(p : (0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d \) and there exists a constant \(C < \infty \), depending only on the Lipschitz constant of \(v \), such that, for all \(t, x \) and \(y \),

\[
C^{-1} \exp\{-C|x - y|^2/t\} \leq p(t, x, y) \leq C \exp\{-|x - y|^2/Ct\}. \tag{1.4}
\]

Moreover, \(C \) may be chosen so that there also holds the following Gaussian tail estimate for the diffusion process \(X \) with generator \(\mathcal{L} \) starting from \(x \): for all \(t > 0 \) and \(\delta > 0 \),

\[
\mathbb{P}_x \left(\sup_{s \leq t} |X_s - x| > \delta \right) \leq C e^{-\delta^2/Ct}. \tag{1.5}
\]

The preceding two estimates show a qualitative equivalence between \(X \) and Brownian motion, valid on all scales. On large scales this can be refined in quantitative terms. Consider the quadratic form \(q \) on \(\mathbb{R}^d \) given by

\[
q(\xi) = \inf_{\theta, \chi} \int_{\mathbb{T}^d} |\xi - \text{div} \chi + \beta \nabla \theta|^2 dx
\]
where the infimum is taken over all Lipschitz functions \(\theta \) and all Lipschitz antisymmetric 2-tensor fields \(\chi \) on the torus \(\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d \). The infimum is achieved, so there is a positive-definite symmetric matrix \(\bar{a} \) such that

\[
q(\xi) = \langle \xi, \bar{a}^{-1} \xi \rangle.
\]

The choice \(\theta = 0 \) and \(\chi = 0 \) shows that \(\bar{a} \geq I \). As the velocity field \(v \) is scaled up, typically it is found that \(\bar{a} \) also becomes large. See for example [4] for further discussion of this phenomenon.

We state first a deterministic homogenization result. Let \(f \in L^2(\mathbb{R}^d) \) and \(\sigma \in (0, \infty) \) be given. Denote by \(u \) the solution to the Cauchy problem for \(L \) in \(\mathbb{R}^d \) with initial data \(f(.,/\sigma) \) and set \(u^{(\sigma)}(t, x) = u(\sigma^2 t, \sigma x) \). Then

\[
\int_{\mathbb{R}^d} |u^{(\sigma)}(t, x) - \bar{u}(t, x)|^2 dx \to 0 \tag{1.6}
\]
as \(\sigma \to \infty \), for all \(t \geq 0 \), where \(\bar{u} \) is the solution to the Cauchy problem for \(\frac{1}{2} \text{div} \bar{a} \nabla \) in \(\mathbb{R}^d \) with initial data \(f \).

In probabilistic terms, we may fix \(x \in \mathbb{R}^d \) and \(\sigma \in (0, \infty) \) and consider the \(L \)-diffusion process \(X \) starting from \(\sigma x \). Set \(X^{(\sigma)}_t = \sigma^{-1} X_{\sigma^2 t} \). Then it is known [13] that

\[
X^{(\sigma)} \to \bar{X}, \quad \text{weakly on } C([0, \infty), \mathbb{R}^d) \tag{1.7}
\]
where \(\bar{X} \) is a Brownian motion in \(\mathbb{R}^d \) with diffusivity \(\bar{a} \) starting from \(x \). The two homogenization statements are essentially equivalent given the regularity implicit in the above qualitative estimates, the Markov property, and the identity

\[
u^{(\sigma)}(t, x) = \mathbb{E}(f(X^{(\sigma)}_t)).
\]

1.3 Existence of a volume growth rate for a diffusion sausage with periodic drift

Recall that the drift \(v \) is \(\mathbb{Z}^d \)-periodic and divergence-free.

Theorem 1.1 There exists a constant \(\gamma = \gamma(v, K) \in (0, \infty) \) such that, for all \(x \),

\[
\lim_{t \to \infty} \frac{|S^K_t|}{t} = \gamma, \quad P_x\text{-almost surely.}
\]

Proof Write \(\pi \) for the projection \(\mathbb{R}^d \to \mathbb{T}^d \). Since \(v \) is periodic, the projected process \(\pi(X) \) is a diffusion on \(\mathbb{T}^d \). As \(v \) is divergence free, the unique invariant distribution for \(\pi(X) \) on \(\mathbb{T}^d \) is the uniform distribution.
The lower bound in (1.4) shows that the transition density of \(\pi(X_1) \) on \(\mathbb{T} \) is uniformly positive. By a standard argument \(\pi(X) \) is therefore uniformly and geometrically ergodic. Consider the case where \(X_0 \) is chosen randomly, and independently of \(W \), such that \(\pi(X_0) \) is uniformly distributed on \(\mathbb{T}^d \). Then \(\pi(X) \) is stationary. For integers \(0 \leq m < n \), define \(V_{m,n} = |S_{(m,n)}^K| \). Then \(V_{l,n} \leq V_{l,m} + V_{m,n} \) whenever \(0 \leq l < m < n \). Since Lebesgue measure is translation invariant and \(\pi(X) \) is stationary, the distribution of the array \((V_{m+k,n+k} : 0 \leq m < n) \) is the same for all \(k \geq 0 \). Moreover \(V_{m,n} \) is integrable for all \(m, n \) by standard diffusion estimates. Hence by the subadditive ergodic theorem [8] we can conclude that, for some constant \(\gamma \geq 0 \),

\[
\lim_{n \to \infty} \frac{|S_n^K|}{n} = \gamma, \quad \text{almost surely.}
\]

The positivity of \(\gamma \) follows from the positivity of \(\text{cap}(K) \) using Theorem 1.5 below.

Let \(P_x \) be the probability measure on \(C([0, \infty), \mathbb{R}^d) \) which is the law of the process \(X \) starting from \(x \). Set

\[
g(x) = P_x \left(\lim_{n \to \infty} \frac{|S_n^K|}{n} = \gamma \right), \quad \tilde{g}(x) = P_x \left(\lim_{n \to \infty} \frac{|S_n^K|}{n} = \gamma \right).
\]

Then \(g \) is periodic and \(\tilde{g} = g \). We have shown that

\[
\int_{x \in [0,1]^d} g(x) dx = 1.
\]

Hence \(g(x) = 1 \) for Lebesgue almost all \(x \). But then by the Markov property, for every \(x \),

\[
g(x) = \tilde{g}(x) = \int_{\mathbb{R}^d} p(1, x, y) g(y) dy = 1
\]

which is the desired almost sure convergence for discrete parameter \(n \). An obvious monotonicity argument extends this to the continuous parameter \(t \).

\[\square \]

1.4 Estimates for the diffusion sausage

We prepare some estimates on the diffusion sausage which will be needed later. These are of a type well known for Brownian motion [9] and extend in a straightforward way using the qualitative Gaussian bounds (1.4) and (1.5).
Lemma 1.2 For all $p \in [1, \infty)$ there is a constant $C(p, v, K) < \infty$ such that, for all $t \geq 0$ and all $x \in \mathbb{R}^d$,

$$
\mathbb{E}_x (|S^K_t|^p)^{1/p} \leq C(t + 1).
$$

Proof Reduce to the case $t = 1$ by subadditivity of volume and L^p-norms and by the Markov property. The estimate then follows from (1.5) since

$$
|S^K_t| \leq \omega_d \left(\text{rad}(K) + \sup_{t \leq 1} |X_t - x| \right)^d.
$$

\qed

Lemma 1.3 There is a constant $C(v, K) < \infty$ with the following property. Let X and Y be independent \mathcal{L}-diffusions starting from x. For all $t \geq 1$ and all $x \in \mathbb{R}^d$, for all $a, b \geq 0$,

$$
\mathbb{P}_x \left(S^K_{(a+1)t}(X) \cap S^K_{(b+1)t}(Y) \neq \emptyset \right) \leq C(a + b)^{-d/2} \tag{1.8}
$$

and, when $b \geq a + 1$,

$$
\mathbb{P}_x \left(S^K_{(a+1)t}(X) \cap S^K_{(b+1)t}(X) \neq \emptyset \right) \leq C(b - a - 1)^{-d/2}. \tag{1.9}
$$

Proof We write the proof for the case $t = 1$. The same argument applies generally. There is alternatively a reduction to the case $t = 1$ by scaling. Assume that $b \geq a + 1$. Write \mathcal{F}_t for the σ-algebra generated by $(X_s : 0 \leq s \leq t)$ and set

$$
R_a = \sup_{a \leq t \leq a+1} |X_t - X_{a+1}|, \quad R_b = \sup_{b \leq t \leq b+1} |X_t - X_b|, \quad Z = X_b - X_{a+1}.
$$

Then, by (1.5),

$$
\mathbb{P}_x (R_b \geq |Z|/3) \leq Ce^{-|Z|^2/9C}
$$

so, using (1.4),

$$
\mathbb{P}_x (R_b \geq |Z|/3) \leq C\mathbb{E}_x (e^{-|Z|^2/9C}) \leq C(b - a - 1)^{d/2}.
$$

On the other hand, by (1.4) again,

$$
\mathbb{P}_x (R_a \geq |Z|/3) \leq C(b - a - 1)^{d/2} R_a^d,
$$

so, using (1.5),

$$
\mathbb{P}_x (R_a \geq |Z|/3) \leq C(b - a - 1)^{d/2}.
$$
Moreover (1.4) gives also
\[\mathbb{P}_x(2 \text{rad}(K) \geq |Z|/3) \leq C(b - a - 1)^{d/2}. \]
Now if \(S^K_{(a, a+1)}(X) \cap S^K_{(b, b+1)}(X) \neq \emptyset \) then either \(R_a \geq |Z|/3 \) or \(R_b \geq |Z|/3 \) or \(2 \text{rad}(K) \geq |Z|/3 \). Hence the preceding estimates imply (1.9).

The proof of (1.8) is similar, resting on the fact that \(X_{a-b} \) has density bounded by \(C(a+b)^{-d/2} \), and is left to the reader.

Lemma 1.4 As \(t \to \infty \), we have
\[\sup_x \mathbb{E}_x \left(\left| \frac{|S^K_t|}{t} - \gamma \right| \right) \to 0 \]
and
\[\sup_x \mathbb{E}_x \left(\left| \frac{|S^K(X) \cap S^K(Y)|}{t} \right| \right) \to 0 \]
where \(Y \) is an independent copy of \(X \).

Proof Note that
\[|S^K_{(1, t+1)}| \leq |S^K_t| \leq |S^K_{(1, t+1)}| + |S^K_{(t+1, t+1)}|. \]
Given Lemma 1.2, the first assertion will follow if we can show that, as \(t \to \infty \),
\[\sup_x \mathbb{E}_x \left(\left| \frac{|S^K_{(1, t+1)}|}{t} - \gamma \right| \right) \to 0. \]
But by the Markov property and using (1.4),
\[\mathbb{E}_x \left(\left| \frac{|S^K_{(1, t+1)}|}{t} - \gamma \right| \right) = \int_{\mathbb{R}^d} p(1, x, y) \mathbb{E}_y \left(\left| \frac{|S^K_t|}{t} - \gamma \right| \right) dy \]
\[\leq C \int_{[0,1]^d} \mathbb{E}_y \left(\left| \frac{|S^K_t|}{t} - \gamma \right| \right) dy \to 0 \]
as \(t \to \infty \), where we used the almost sure convergence \(|S^K_t|/t \to \gamma \) when \(\pi(X_0) \) is uniform, together with uniform integrability from Lemma 1.2 to get the final limit.

For the second assertion, choose \(q \in (1, 3/2) \) and \(p \in (3, \infty) \) with \(1/p + 1/q = 1 \). Then, for \(j, k \geq 0 \), by Lemmas 1.2 and 1.3, there is a
constant $C(p, v, K) < \infty$ such that

$$
\mathbb{E}_x(|S^K_{(j,j+1)}(X) \cap S^K_{(k,k+1)}(Y)|) \\
\leq \mathbb{E}_x\left(|S^K_{(j,j+1)}(X)|1_{\{S^K_{(j,j+1)}(X) \cap S^K_{(k,k+1)}(Y) \neq \emptyset\}}\right) \\
\leq \mathbb{E}_x\left(|S^K_{1}(X)|^p\right)^{1/p} \mathbb{P}_x\left(S^K_{(j,j+1)}(X) \cap S^K_{(k,k+1)}(Y) \neq \emptyset\right)^{1/q} \\
\leq C(j + k)^{-d/2q}.
$$

So, as $n \to \infty$, we have

$$
\mathbb{E}_x\left(\frac{|S^K_n(X) \cap S^K_n(Y)|}{n}\right) \\
\leq \mathbb{E}_x(|S^K_n(X)|) + \sum_{j=1}^{n-1} \sum_{k=0}^{n-1} \mathbb{E}_x\left(|S^K_{(j,j+1)}(X) \cap S^K_{(k,k+1)}(Y)|\right) \\
\leq Cn^{-1} + Cn^{-d/(2q) + 1} \to 0.
$$

\[\Box\]

1.5 Asymptotics of the growth rate for small and large cross-sections

We investigate the behaviour of the asymptotic growth rate $\gamma(v, rK)$ of the volume of the (X, rK)-sausage S^K_t in the limits $r \to 0$ and $r \to \infty$. Recall the stochastic differential equation (1.1) for X and recall the rescaled process $X((\sigma))$ from Section 1.2. Set $W((\sigma)) = \sigma^{-1}W_{\sigma^2}$. Then $W((\sigma))$ is also a Brownian motion and $X((\sigma))$ satisfies the stochastic differential equation

$$
dX((\sigma)) = dW((\sigma)) + v((\sigma)(X((\sigma))))dt \quad (1.10)
$$

where $v((\sigma)) = \sigma v(\sigma x)$. This makes it clear that $X((\sigma)) \to W$ as $\sigma \to 0$ weakly on $C([0, \infty), \mathbb{R}^d)$. Recall from Section 1.2 the fact that $X((\sigma)) \to X$ as $\sigma \to \infty$, in the same sense, where X is a Brownian motion with diffusivity \bar{a}.

Take $\sigma = r$. Then

$$
S^K_t(X) = rS^K_{t-2r}(X(r))
$$

so

$$
|S^K_t(X)| = r^d|S^K_{t-2r}(X(r))|.
$$
Hence the limit
\[\gamma(v(r), K) := \lim_{t \to \infty} \frac{|S^K_t(X(r))|}{t} \]
exists and equals \(r^2 - d \gamma(v, rK) \). The weak limits for \(X(r) \) as \(r \to 0 \) or \(r \to \infty \) suggest the following result, which however requires further argument because the asymptotic growth rate of the sausage is not a continuous function on \(C([0, \infty), \mathbb{R}^d) \). Write \(\text{cap}(K) \) for the Newtonian capacity of \(K \) and write \(\text{cap}_a(K) \) is the capacity of \(K \) with respect to the diffusivity matrix \(a \). Thus
\[\text{cap}_a(K) = \sqrt{\det a} \text{ cap}(a^{-1/2} K). \]

Theorem 1.5 We have
\[\lim_{r \to 0} r^2 - d \gamma(v, rK) = \lim_{r \to 0} \gamma(v(r), K) = \gamma(0, K) = \text{cap}(K) \]
and
\[\lim_{r \to \infty} r^2 - d \gamma(v, rK) = \lim_{r \to \infty} \gamma(v(r), K) = \text{cap}_a(K). \]

Proof Fix \(T \in (0, \infty) \) and write \(I(j) \) for the interval \((j - 1)T, jT\]. Consider for \(1 \leq j \leq k \) the function \(F_{j,k} \) on \(C([0, \infty), \mathbb{R}^d) \) defined by
\[F_{j,k}(\gamma) = \frac{|S^K_{I(j)}(\gamma) \cap S^K_{I(k)}(\gamma)|}{T}. \]
Then \(F_{j,k} \) is continuous, so
\[\lim_{r \to 0} \mathbb{E}(F_{j,k}(X(r))) = \mathbb{E}(F_{j,k}(W)), \quad \lim_{r \to \infty} \mathbb{E}(F_{j,k}(X(r))) = \mathbb{E}(F_{j,k}(\bar{X})). \]
Choose \(X_0 \) so that \(\pi(X_0) \) is uniformly distributed. Then by stationarity
\[\mathbb{E}(F_{j,k}(X(r))) = \mathbb{E}(F_{k-j}(X(r))) \]
where \(F_j = F_{1,j+1} \). Fix \(r \) and write \(S^K_{I(j)}(X(r)) = S_j \). Note that
\[S_{[0,nT]} = S_{I(1)} \cup \cdots \cup S_{I(n)}. \]
So, by inclusion-exclusion, we obtain
\[n\mathbb{E}(F_0(X(r))) - \sum_{j=1}^{n-1} (n-j)\mathbb{E}(F_j(X(r))) \leq \mathbb{E}(|S_{[0,nT]}|/T) \leq n\mathbb{E}(F_0(X(r))). \]
Divide by \(n \) and let \(n \to \infty \) to obtain
\[\mathbb{E}(F_0(X(r))) - \sum_{j=1}^{\infty} \mathbb{E}(F_j(X(r))) \leq \gamma(v(r), K) \leq \mathbb{E}(F_0(X(r))). \]
Homogenization for advection-diffusion in a perforated domain

Fix \(q \in (1, 3/2) \) and \(p \in (3, \infty) \) with \(p^{-1} + q^{-1} = 1 \). By Lemmas 1.2 and 1.3, there is a constant \(C(p, v, K) < \infty \) such that, for all \(r \) and \(j \),
\[
\mathbb{E}(F_j(X^{(r)})) = \mathbb{E}(|S_{I(1)} \cap S_{I(j+1)}|/T)
\leq \mathbb{E} \left(|S_{I(1)}|/T \right)^{1/p} \mathbb{P}(S_{I(1)} \cap S_{I(j+1)} \neq \emptyset)^{1/q} \leq 2C(j-1)^{-d/2q}.
\]

Given \(\varepsilon > 0 \), we can choose \(J(p, v, K) < \infty \) so that
\[
\sum_{j=J+1}^{\infty} \mathbb{E}(F_j(X^{(r)})) \leq 2C \sum_{j=J}^{\infty} j^{-d/2q} \leq \varepsilon.
\]

We follow from this point the case \(r \to \infty \). The argument for the other limit is the same. Let \(r \to \infty \) to obtain
\[
\mathbb{E}(F_0(\bar{X})) - \sum_{j=1}^{J} \mathbb{E}(F_j(\bar{X})) - \varepsilon \leq \liminf_{r \to \infty} \gamma(v^{(r)}, K)
\leq \limsup_{r \to \infty} \gamma(v^{(r)}, K) \leq \mathbb{E}(F_0(\bar{X})).
\]

It is known that
\[
\lim_{T \to \infty} \mathbb{E}(F_0(\bar{X})) = \lim_{T \to \infty} \mathbb{E}(|S^K_T(\bar{X})|/T) = \text{cap}_a(K).
\]

See [9] for the case \(\bar{a} = I \). The general case follows by a scaling transformation. Note that, for \(j \geq 1 \),
\[
|S^K_{(0,T]}(\bar{X}) \cap S^K_{(jT,(j+1)T]}(\bar{X})| + |S^K_{(0,(j+1)T]}(\bar{X})| \leq \sum_{i=1}^{j+1} |S^K_{(i-1)T,iT]}(\bar{X})|.
\]

Take expectation, divide by \(T \) and let \(T \to \infty \) to obtain
\[
(j+1)\text{cap}_a(K) + \limsup_{T \to \infty} \mathbb{E}|S^K_{(0,T]}(\bar{X}) \cap S^K_{(jT,(j+1)T]}(\bar{X})|/T \leq (j+1)\text{cap}_a(K)
\]

which says exactly that
\[
\lim_{T \to \infty} \mathbb{E}(F_j(\bar{X})) = 0.
\]

Hence the desired limit follows on letting \(T \to \infty \) in (1.12).

1.6 Homogenization of the advection-diffusion equation in a perforated domain

Our main results are analogues to the homogenization statements (1.6), (1.7) for advection-diffusion in a perforated domain. Recall that \(v \) is
a \mathbb{Z}^d-periodic, Lipschitz, mean-zero, divergence-free vector field on \mathbb{R}^d, and K is a compact subset of \mathbb{R}^d. The domain $D \subseteq \mathbb{R}^d$ is constructed by removing all the sets $K + p$, where p runs over the set P of atoms of a Poisson random measure μ on \mathbb{R}^d of intensity $\rho = \sigma^{-2}$. Write

$$\dot{u} = \bar{a}(v, K), \quad \bar{\lambda} = \lambda(v, K) = \gamma(v, K).$$

Theorem 1.6 Let $f \in L^2(\mathbb{R}^d)$ and $\sigma \in (0, \infty)$ be given. Denote by u the solution2 to the Cauchy problem for

$$\mathcal{L} = \frac{1}{2}\Delta + v(x) \nabla$$

in $[0, \infty) \times D$ with initial data $f(\cdot/\sigma)$, and with Dirichlet conditions on the boundary of D. Set $u^{(\sigma)}(t, x) = u(\sigma^2 t, \sigma x)$. Then

$$\mathbb{E} \int_{\mathbb{R}^d} |u^{(\sigma)}(t, x) - \bar{u}(t, x)|^2 dx \to 0$$

as $\sigma \to \infty$, for all $t \geq 0$, where \bar{u} is the solution to the Cauchy problem for $\frac{1}{2} \text{div} \bar{a} \nabla - \bar{\lambda}$ in $[0, \infty) \times \mathbb{R}^d$ with initial data f.

Proof Replace t by $\sigma^2 t$, x by σx and f by $f(\cdot/\sigma)$ in (1.2) and (1.3) to obtain

$$\mathbb{E} \left(u^{(\sigma)}(t, x) \right) = \mathbb{E}_{\sigma x} \left(f(X_t^{(\sigma)}) \exp\{-\rho|S_{\sigma t}^K(X)|\} \right)$$

and

$$\mathbb{E} \left(u^{(\sigma)}(t, x)^2 \right) = \mathbb{E}_{\sigma x} \left(f(X_t^{(\sigma)}) f(Y_t^{(\sigma)}) \exp\{-\rho|S_{\sigma t}^K(X) \cup S_{\sigma t}^K(Y)|\} \right)$$

where the subscript σx specifies the starting point of X and where Y is an independent copy of X. We omit from now the superscript K. Then3

$$\mathbb{E} \left(|u^{(\sigma)}(t, x) - \bar{u}(t, x)|^2 \right)$$

$$= \mathbb{E}_{\sigma x} \left(f(X_t^{(\sigma)}) f(Y_t^{(\sigma)}) e^{-\rho|S_{\sigma t}^K(X) \cup S_{\sigma t}^K(Y)|} \left(1 - e^{-\rho|S_{\sigma t}^K(X) \cap S_{\sigma t}^K(Y)|} \right) \right)$$

$$+ \left(\mathbb{E}_{\sigma x} \left(f(X_t^{(\sigma)}) e^{-\rho|S_{\sigma t}^K(X)|} - e^{-\lambda t} \right) \right)$$

$$+ \left(\mathbb{E}_{\sigma x} \left(f(X_t^{(\sigma)}) - \mathbb{E}_x (f(X_t)) \right) e^{-\lambda t} \right)^2$$

$$\leq \mathbb{E}_{\sigma x} \left(f(X_t^{(\sigma)})^2 \mathbb{E}_{\sigma x} (\rho|S_{\sigma t}^K(X) \cap S_{\sigma t}^K(Y)|) \right)^{1/2}$$

$$+ 2 \mathbb{E}_{\sigma x} \left(f(X_t^{(\sigma)})^2 \mathbb{E}_{\sigma x} (\rho|S_{\sigma t}^K(X)| - \bar{\lambda} t) \right)$$

$$+ 2 |u_0^{(\sigma)}(t, x) - \bar{u}_0(t, x)|^2$$

(1.13)

2 We extend u to a function on $[0, \infty) \times \mathbb{R}^d$ by setting $u(t, x) = 0$ for any $x \notin D$.

3 This is an instance of the formula $\mathbb{E}(|X - a|^2) = \text{var}(X) + (\mathbb{E}(X) - a)^2$.
where $u_0^{(\sigma)}$ and \bar{u}_0 denote the corresponding solutions to the Cauchy problem with initial data f in the whole space, and we used Cauchy–Schwarz and $(a + b)^2 \leq 2a^2 + 2b^2$ and $|e^{-a} - e^{-b}|^2 \leq |b - a|$ to obtain the inequality. Now

$$\int_{\mathbb{R}^d} \mathbb{E}_{\sigma x} \left(f(X_1^{(\sigma)})^2 \right) dx = \int_{\mathbb{R}^d} |f(x)|^2 dx < \infty$$

because dx is stationary for $X^{(\sigma)}$ and, by (1.6), as $\sigma \to \infty$

$$\int_{\mathbb{R}^d} |u_0^{(\sigma)}(t, x) - \bar{u}_0(t, x)|^2 dx \to 0.$$

So, using Lemma 1.4, on integrating (1.13) over \mathbb{R}^d and letting $\sigma \to \infty$, the right hand side tends to 0, proving the theorem.

Theorem 1.7 Let $x \in \mathbb{R}^d$ and $\sigma \in (0, \infty)$ be given. Let X be an \mathcal{L}-diffusion in \mathbb{R}^d starting from σx and set

$$T = \inf\{t \geq 0 : X_t \in K + P\}.$$

Set $X^{(\sigma)}_t = \sigma^{-1}X_{\sigma t}$ and $T^{(\sigma)} = \sigma^{-2}T$. Write \bar{X} for a Brownian motion in \mathbb{R}^d with diffusivity \bar{a} starting from x, and write \bar{T} for an exponential random variable of parameter $\bar{\lambda}$, independent of \bar{X}. Then, as $\sigma \to \infty$,

$$(X^{(\sigma)}, T^{(\sigma)}) \to (\bar{X}, \bar{T}), \quad \text{weakly on } C([0, \infty), \mathbb{R}^d) \times [0, \infty).$$

Proof Write S_t for the (X, K)-sausage. Fix a bounded continuous function F on $C([0, \infty), \mathbb{R}^d)$ and fix $t > 0$. Then

$$\mathbb{E} \left(F(X^{(\sigma)})1_{\{T^{(\sigma)}>t\}} \right) = \mathbb{E} \left(F(X^{(\sigma)}) \exp\{-\rho|S_{\sigma t}\}\right)$$

and

$$\mathbb{E} \left(F(\bar{X})1_{\{T>t\}} \right) = \mathbb{E} \left(F(\bar{X})e^{-\lambda t}\right)$$

so

$$\left| \mathbb{E} \left(F(X^{(\sigma)})1_{\{T^{(\sigma)}>t\}} \right) - \mathbb{E} \left(F(\bar{X})1_{\{T>t\}} \right) \right| \leq ||F||_\infty \mathbb{E}_{\sigma x} |\rho|S_{\sigma t}| - \bar{\lambda}t| + ||\mathbb{E}(F(X^{(\sigma)}) - \mathbb{E}(F(\bar{X})))|e^{-\lambda t}|.$$

On letting $\sigma \to \infty$, the first term on the right tends to 0 by Lemma 1.4 and the second term tends to 0 by (1.7), so the left hand side also tends to 0, proving the theorem. \qed
1.7 The case of diffusivity $\varepsilon^2 I$

In this section and the next we fix $\varepsilon \in (0, \infty)$ and consider the more general case of the operator

$$\mathcal{L} = \frac{1}{2} \varepsilon^2 \Delta + v(x) \nabla.$$

The following statements follow from the corresponding statements above for the case $\varepsilon = 1$ by scaling. Fix $x \in \mathbb{R}^d$ and let X be an \mathcal{L}-diffusion in \mathbb{R}^d starting from x. Then

$$|S^K_t(X)|/t \to \gamma(\varepsilon, v, K), \quad \mathbb{P}_x\text{-almost surely}$$

as $t \to \infty$, where

$$\gamma(\varepsilon, v, K) = \varepsilon^2 \gamma(\varepsilon^{-2} v, K).$$

Moreover, setting $v^{(r)}(x) = rv(rx)$, as above, we have

$$\gamma(\varepsilon, v^{(r)}, K) \to \operatorname{cap}_{\varepsilon^2 I}(K) = \varepsilon^2 \operatorname{cap}(K), \quad \text{as } r \to 0$$

and

$$\gamma(\varepsilon, v^{(r)}, K) \to \operatorname{cap}_{\bar{a}(\varepsilon, v)}(K), \quad \text{as } r \to \infty$$

where

$$\bar{a}(\varepsilon, v) = \varepsilon^2 \bar{a}(\varepsilon^{-2} v).$$

Fix $\sigma \in (0, \infty)$ and suppose now that X starts at σx. Define as above $T = \inf\{t \geq 0 : X_t \in K + P\}$ and write $X_t^{(\sigma)} = \sigma^{-1} X_{\sigma^2 t}$ and $T^{(\sigma)} = \sigma^{-2} T$. Then, as $\sigma \to \infty$,

$$(X^{(\sigma)}, T^{(\sigma)}) \to (\bar{X}, \bar{T}), \quad \text{weakly on } C([0, \infty), \mathbb{R}^d) \times [0, \infty)$$

where \bar{X} is a Brownian motion in \mathbb{R}^d of diffusivity $\bar{a}(\varepsilon, v)$ starting from x, and where \bar{T} is an exponential random variable independent of \bar{X}, of parameter $\lambda(\varepsilon, v, K) = \gamma(\varepsilon, v, \hat{K})$.

1.8 Monte Carlo computation of the asymptotic growth rate

Let X be as in the preceding section. Fix $T \in (0, \infty)$. The following algorithm may be used to estimate numerically the volume of the (X, K)-sausage $S_T = S^K_T(X)$. The algorithm is determined by the choice of three parameters $N, m, J \in \mathbb{N}$.

Homogenization for advection-diffusion in a perforated domain

- **Step 1**: Compute an Euler-Maruyama solution \((X_{n\Delta t} : n = 0, 1, \ldots, N) \) to the stochastic differential equation
 \[
 dX_t = \varepsilon dW_t + v(X_t)dt, \quad X_0 = x
 \]
 up to the final time \(T = N\Delta t \) (Figure 1.1a).

- **Step 2**: Calculate
 \[
 R_K = \max_{y \in K, 1 \leq k \leq d} |y^k|, \quad R_{X,T} = \max_{1 \leq n \leq N, 1 \leq k \leq d} \left| X_{n\Delta t}^k - x^k \right|
 \]
 We approximate \(S_T \) by \(S_T^{(N)} = \bigcup_{0 \leq n \leq N} (K + X_{n\Delta t}) \). Note that \(S_T^{(N)} \) is contained in the cube with side-length \(L = 2(R_K + R_{X,T}) \) centred at \(x \) (Figure 1.1b).

- **Step 3**: Subdivide the cube of side-length \(L \) centred at \(x \) into \(2^d \) sub-cubes of side-length \(L/2 \) and check which of them have non-empty intersection with \(S_T^{(N)} \). Discard any sub-cubes with empty intersection. Repeat the division and discarding procedure in each of the remaining sub-cubes (Figure 1.2) iteratively to obtain \(I \) sub-cubes of side-length \(L/2^m \), centred at \(y_1, \ldots, y_I \) say, whose union contains \(S_T^{(N)} \).

- **Step 4**: Generate uniform random variables \(U_1, \ldots, U_J \) in \([-1/2, 1/2]^d\) and estimate \(V = |S_T| \) by
 \[
 \hat{V} = J^{-1}2^{-md}L^d \sum_{i=1}^{I} \sum_{j=1}^{J} \left(1 - \prod_{n=0}^{N} 1_{A_n(i,j)} \right)
 \]
 where \(A_n(i,j) = \{y_i + 2^{-m}LU_j \not\in K + X_{n\Delta t}\} \).

The algorithm was tested in the case \(d = 3 \). We took \(\varepsilon = 0.25 \) and took \(v \) to be the Taylor–Green vector field in the first two co-ordinate
\[v(x) = (-\sin x_1 \cos x_2, \cos x_1 \sin x_2, 0)^T. \]

We applied the algorithm to \(X^{(r)} \), which has drift vector field \(\tilde{v}^{(r)}(x) = rv(rx) \), for a range of choices of \(r \in (0, \infty) \). We took \(K \) to be the Euclidean unit ball \(B \) and computed \(|S^B_T(X^{(r)})| \) for \(T = 10^4 \), using parameter values \(N = 10^6 \), \(m = 4 \) and \(J = 10^4 \). The numerical method used to solve (1.14) was taken from [14]. The values \(|S^B_T(X^{(r)})|/T \) were taken as estimates of the asymptotic volume growth rate \(\gamma(0.25, \tilde{v}^{(r)}, B) \). These are displayed in Figure 1.3.

In Section 1.7 we stated the following theoretical limit, deduced from Theorem 1.5:

\[\lim_{r \to 0} \gamma(\varepsilon, v^{(r)}, B) = \varepsilon^2 \text{cap}(B) = 2\pi \varepsilon^2 = 0.3927. \]

(1.15)

This is consistent with the computed values of \(\gamma(0.25, v^{(r)}, B) \) when \(r \) is small.
Homogenization for advection-diffusion in a perforated domain

It is known [10] that \(\tilde{a}(\varepsilon, v) \) has the form

\[
\tilde{a}(\varepsilon, v) = \begin{pmatrix}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \varepsilon^2/2
\end{pmatrix}
\]

for some \(\alpha = \alpha(\varepsilon, v) \), which can be computed using Monte Carlo simulations. In [16], this was carried out for \(\varepsilon = 0.25 \) up to a final time \(T = 10^4 \), using a time step \(\Delta t = 10^{-2} \), again using a numerical method from [14] to solve (1.14). The value \(\alpha(0.25, v) = 0.0942 \) was obtained as the sample average over \(10^4 \) realizations of \(|X_T^1|^2/T \). Using this value, we simulated \(\tilde{X} \) and used the volume algorithm to compute \(|S^T_{\tilde{X}}(\tilde{X})|/T \) as an approximation to \(\text{cap}_{\tilde{a}(0.25, v)}(B) \), obtaining the value 1.4587. We showed theoretically that

\[
\lim_{r \to \infty} \gamma(\varepsilon, v^{(r)}, B) = \text{cap}_{\tilde{a}(\varepsilon, v)}(B).
\]

The computed value for \(\text{cap}_{\tilde{a}(0.25, v)}(B) \) is consistent with the computed values of \(\gamma(0.25, v^{(r)}, B) \) for large \(r \).
References

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/09</td>
<td>Block triangular preconditioners for PDE constrained optimization</td>
<td>Rees, Stoll</td>
</tr>
<tr>
<td>16/09</td>
<td>From microscopic to macroscopic descriptions of cell migration on growing domains</td>
<td>Baker, Yates, Erban</td>
</tr>
<tr>
<td>17/09</td>
<td>The Influence of Gene Expression Time Delays on Gierer-Meinhardt Pattern Formation Systems</td>
<td>Seirin Lee, Gaffney, Monk</td>
</tr>
<tr>
<td>18/09</td>
<td>Analysis of a stochastic chemical system close to a sniffer bifurcation of its mean field model</td>
<td>Erban et al.</td>
</tr>
<tr>
<td>19/09</td>
<td>On the existence and the applications of modified equations for stochastic differential equations</td>
<td>Zygalakis</td>
</tr>
<tr>
<td>20/09</td>
<td>Pebble bed: reflector treatment and pressure velocity coupling</td>
<td>Charpin et al.</td>
</tr>
<tr>
<td>21/09</td>
<td>A finite difference method for free boundary problems</td>
<td>Fornberg</td>
</tr>
<tr>
<td>22/09</td>
<td>Tangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy</td>
<td>Majumdar, Robbins, Zyskin</td>
</tr>
<tr>
<td>23/09</td>
<td>Morphological instability of a nonequilibrium icecolloid interface</td>
<td>Peppin, Majumdar, Wettlaufer</td>
</tr>
<tr>
<td>24/09</td>
<td>The effect of polar lipids on tear film dynamics</td>
<td>Aydemir, Beward, Witelski</td>
</tr>
<tr>
<td>25/09</td>
<td>Preconditioning for active set and projected gradient methods as semi-smooth Newton methods for PDE-constrained optimization with control constraints</td>
<td>Stoll, Wathen</td>
</tr>
<tr>
<td>26/09</td>
<td>Functional differential equations arising in cell-growth</td>
<td>Wake, Begg</td>
</tr>
<tr>
<td>27/09</td>
<td>A Cell Growth Model Revisited</td>
<td>Derfel, van Brunt, Wake</td>
</tr>
<tr>
<td>28/09</td>
<td>Quasi-steady state reduction of molecular motor-based models of directed intermittent search</td>
<td>Newby, Bressloff</td>
</tr>
<tr>
<td>29/09</td>
<td>All-at-once preconditioning in PDE-constrained optimization</td>
<td>Rees, Stoll, Wathen</td>
</tr>
<tr>
<td>30/09</td>
<td>An hp-Local Discontinuous Galerkin method for Parabolic Integro-Differential Equations</td>
<td>Pani, Yadav</td>
</tr>
</tbody>
</table>
31/09 Stochastic neural field theory and the system-size expansion

32/09 A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process

33/09 Nematic liquid crystals: from Maier-Saupe to a continuum theory

34/09 Tangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy

35/09 A metabolite-sensitive, thermodynamically-constrained model of cardiac cross-bridge cycling: Implications for force development during ischemia

36/09 Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry

37/09 Optimal L2-error estimates for the semidiscrete Galerkin approximation to a second order linear parabolic initial and boundary value problem with nonsmooth initial data

38/09 Optimal L2 estimates for semidiscrete Galerkin methods for parabolic integro-differential equations with nonsmooth data

39/09 Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

40/09 Stationary bumps in a piecewise smooth neural field model with synaptic depression

Copies of these, and any other OCCAM reports can be obtained from:
Oxford Centre for Collaborative Applied Mathematics
Mathematical Institute
24 - 29 St Giles’
Oxford
OX1 3LB
England
www.maths.ox.ac.uk/occam