Monte Carlo simulation algorithms for the pricing of American options

Peter BQ Lin
Lady Margaret Hall
University of Oxford

A dissertation submitted for the degree of

Masters of Science

Trinity 2008
Acknowledgements

Peter BQ Lin is grateful for the support and guidance that Professor Mike Giles has provided in the duration of the dissertation.
Abstract

One looks at the pricing of American options using Monte Carlo simulations. The selected theories on the low-biased and high-biased algorithms are reviewed. Numerical results from the implementations of the chosen algorithms are presented and analysed. One also investigates the effects of applying antithetic variables to the high-biased algorithm, showing that the variance reducing technique provides great improvements to the existing algorithm.
Contents

1 Introduction 1

2 Theory on Monte Carlo pricing methods for American options 4
 2.1 Problem formulation .. 4
 2.1.1 General formulation 4
 2.1.2 Dynamic programming formulation 6
 2.2 Low-biased estimators 8
 2.2.1 Longstaff-Schwartz algorithm 10
 2.2.2 Alternative low-biased estimator 11
 2.3 High-biased estimator 12
 2.3.1 Dual problem ... 13
 2.3.2 Martingales for the high estimate algorithm 15

3 Implementation and numerical results 17
 3.1 Low-biased estimates 18
 3.1.1 Some analysis on the results 19
 3.1.2 Sources of errors of the estimates 20
 3.2 High-biased estimate 22
 3.2.1 Results for two different numbers of sub-paths 22
 3.2.2 Antithetic variables 23

4 Summary and concluding comments 26

A Appendix 29
 A.1 The implementation of Longstaff-Schwartz algorithm 29
 A.2 The implementation for the alternative low-biased algorithm 33
A.3 The implementation of high-biased algorithm

Bibliography
List of Figures

2.1 Optimal exercise boundary for a vanilla American put. 6

3.1 Vanilla American priced by the penalty method with 10000 time steps 17
3.2 Compare low-biased estimates with FD estimates 20
3.3 The effects of varying the number of time steps and the number of basis functions on the low-biased estimates 21
3.4 High-biased estimates for American puts using different numbers of sub-paths ... 24
Chapter 1

Introduction

What differs American-style options from European-style options is that the latter can only be exercised at one single fixed date, i.e. the maturity date of the option, whereas the former can be exercised any time up to the maturity. This difference has made American options more difficult to price than European ones. For the valuation of the European contracts, it is sufficient to take the expectations of the discounted payoffs at the contracts’ maturities, since one can only exercise at the terminal dates. For the American contracts, the problems of what the best exercise strategies are need to be considered before the valuations can be done. One type of the more simple American options is the vanilla American call with no dividends, whose optimal exercising time is the maturity date, making it to have the same value as its European counterpart. Apart from this simple case, the optimal exercising time for most of American options are never this trivial. This embedded optimisation problem that needs to be addressed, makes American options being valuated in more complex approaches.

One type of numerical methods being successfully applied to the valuation of American options is through the finite difference approach. This involves treating the valuation as a linear complementarity problem. It then solves the numerical PDEs, that the options follow, backwards in time from the maturity date. The linear complementarity problem that uniquely determines the price of a simple American
options, $V(S,t)$, is in the form of

$$\mathcal{L}V(S,t) \geq 0$$

(1.1)

$$V(S,t) \geq h(S,t)$$

$$\mathcal{L}V(S,t) \cdot (V(S,t) - h(S,t)) = 0,$$

where $h(S,t)$ is the payoff at time t with underlying asset S and

$$\mathcal{L}V(S,t) = \frac{\partial V}{\partial t} - 1/2 \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} - rS \frac{\partial V}{\partial S} + rV,$$

is the classic Black-Scholes operator function. The details on different algorithms for this approach are discussed in Chapter 27 and 28 of [5]. The finite difference approach is very efficient for valuating American options in low dimensions, producing estimates with high degrees of accuracies. Its computing speed however suffers greatly due to the “curse of dimensionality” when it is applied to products with high dimensions. An example of these is the valuation of fixed income contracts under the LIBOR market model. Consequently, practical applications of finite difference approach is limited to low dimensional problems.

As Monte Carlo simulations are not affected by the “curse of dimensionality”, American option pricing methods of this kind have been looked at and developed in recent years. Bossaerts in [1] and Tilley in [11] were among the first in attempting to value the American options using simulation methods. One class of techniques is based on the ideas proposed by Carrière in [3], Longstaff and Schwartz in [9] and Tsitsiklis and Van Roy in [12, 13]. It approximates the values by formulating the problem through dynamic programming and using regression to approximate continuation values, which are the prices for holding on to contracts instead of exercising them at exercise dates. The aim of this dissertation is to investigate the algorithms that adopt this approach.

Three different algorithms will be assessed. As the estimators for Monte Carlo simulation algorithms are biased in valuing the American contracts, two low-biased algorithms and one high-biased algorithm are being considered. The low-biased algorithms are the Longstaff-Schwartz algorithm, which was proposed by Longstaff and Schwartz in [9], and an alternative low-biased algorithm based on a sub-optimal exercising policy. The high-biased algorithm originates from dual formulations, which
were first established by Haugh and Kogan in [8] and Rogers in [10] as a minimisation problem. The main feature in this algorithm is the use of sub-paths in approximating a certain type of conditional expectations required for the valuation. For the implementation of any algorithm, the accuracies of the estimates are always affected by different sources of limitations present in practice. For all Monte Carlo simulations, the limitation on the number of samples that can be taken causes variations within the estimates. This dissertation also presents the other sources of limitations inherent in these algorithms, as well as testing the effects that the limitations can have on the estimates. It also applies a variance reducing technique to the high-biased algorithm. The resulting estimates achieve the same accuracies as the original algorithm, which requires 5 times the length of the former computational time.

The dissertation is organised as follows. Chapter 2 gives a review of the relevant theories that the algorithms are based upon, as well as the actual details on the algorithms. In Chapter 3, one presents and analyses the numerical results from the implementation of these algorithms to price vanilla American put options. The results from applying antithetic variables are also shown and compared in that chapter. Chapter 4 is the final chapter that summaries the findings from the dissertation and suggests plausible extensions that can be done on this dissertation.
Chapter 2

Theory on Monte Carlo pricing methods for American options

This chapter presents some of the basic theories behind the different algorithms for pricing American-style contracts. This is done in order to demonstrate how and why the algorithms work before presenting results of the implementations. First, the American pricing problem is formulated formally. This is followed by a closer examination on each individual algorithms. Most of the ideas from this chapter come from [8] and Chapter 8 of [6].

2.1 Problem formulation

This section formulates the American option pricing problem in a general sense as well as through dynamic programming approach. The latter is the basis on which the regression algorithms were derived from.

2.1.1 General formulation

The problem is formulated in an economy with a set of dynamically complete markets, with an underlying probability space Σ, the associated sigma algebra \mathcal{F} and the associated risk-neutral probability measure \mathbb{Q}. With the markets being complete and under some mild regularity assumptions, the risk-neutral probability measure, \mathbb{Q} is in fact unique. This allows all contingent claims to be priced as the expected value of their discounted cash flows. This idea of valuing financial contracts through probabilistic approach is well explained in [7]. In this economy, the structure of information is represented by the natural augmented filtration $\{\mathcal{F}_t : t \in [0,T]\}$,
generated by W_t, a d-dimensional standard Brownian motion. Thus the state of the economy is represented by an \mathcal{F}_t-adapted Markovian process: \(\{X_t \in \mathbb{R}^d : t \in [0, T]\} \).

For the payoff of the option, it is represented by a non-negative adapted process $h_t = h(X_t)$, where the holder receives an amount h_t at time t if he chooses to exercise it then. One also defines the risk-less discount process as:

$$D_{s,t} = \exp \left(-\int_s^t r_u du \right),$$

where r_t is the instantaneous risk-free return rate, such as an interest rate received from a bank account. Further it is assumed that the discounted payoff processes satisfies the following integrability condition

$$\mathbb{E}_t^Q \left(\max_{t \in [0, T]} |D_{0,t} h_t| \right) < \infty$$

where $\mathbb{E}_t^Q[\cdot]$ is the conditional expectation taken under the risk-neutral probability triples $(\Sigma, \mathcal{F}_t, Q)$.

The American options’s price process, V_t is conditioned on the option was not exercised before time t. It satisfies the equation:

$$V_t = \sup_{\tau \geq t} \mathbb{E}_t^Q (D_{t,\tau} h_\tau), \quad (2.1)$$

where τ belongs to a class of admissible stopping times \mathcal{T} with values in $[t, T]$. This now forms a well-known characterisation of American options. The pricing equation in (2.1) states that the price of an American contract should be the discounted expectation of its payoff on the date prescribed by the optimal exercise policy.

As an example, vanilla American put options are formulated here under the general framework from above. This is also because the algorithms are implemented to price this type of contracts. The vanilla put has a strike of K on a single underlying financial asset S_t and has the immediate exercise value of

$$h(S(t)) = (K - S(t))^+.$$ \hfill (2.2)

The risk-neutral dynamics of S is modelled with geometric Brown motion, such that it’s governed by the following SDE

$$\begin{cases}
 dS(t) = rS(t)dt + \sigma S(t)dW(t), & \text{for } t > 0 \\
 S(0) = S_0
\end{cases}$$ \hfill (2.3)
where r the risk-free return rate is now constant and σ is a constant volatility. Supposing the maturity of the option is at time T, the option value at time 0 is

$$V_0 = \sup_{\tau \in T} E_Q^0(D_{0,\tau}(K - S(\tau))^+),$$

where $D_{0,\tau}$ is now simply $e^{-r\tau}$. The optimal stopping time τ^*, which achieves the supremum, has the following form

$$\tau^* = \inf\{t \geq 0 : S_t \leq b_t^*\},$$

for some optimal exercise boundary b^*. This means that the option should be exercised at the first time when the stock value hits b_t^*. Figure 2.1 illustrates the idea for the option’s exercise boundary.

As with the finite difference approach, for the valuation of American contracts using Monte Carlo simulations, one has to restrict the number of exercise opportunities to be finite, i.e. for $t_1 < t_2 < \ldots < t_m = T$. This in essence has turn the American option problem into a Bermudan one. The values obtained from having discrete exercise dates can be considered as an approximation to the continuous case. This is done by looking at the approximate values as m tends to infinity. As a convention, it is assumed that the options are not allowed to be exercised at time t_0.

2.1.2 Dynamic programming formulation

One now presents the dynamic programming formulation for the options with finite numbers of exercise dates. Use $h_i(s)$ to denote the payoff and $V_i(s)$ to denote the
value of the option at time \(t_i \) with the asset price \(S_i = s \). As discussed above, \(V_i(s) \) is defined with the assumption that the option was not exercised before time \(t_i \). To determine the value \(V_0(S_0) \), a backward recursion is employed as follows:

\[
V_m(s) = h_m(s) \tag{2.4}
\]

\[
V_{i-1}(s) = \max\{h_{i-1}(s), \mathbb{E}(D_{i-1,i}V_i(S_i)|S_{i-1} = s)\}, \quad i = 1, \ldots, m. \tag{2.5}
\]

As the expectation is always taken under the unique risk-neutral probability measure, one has dropped the superscript \(\mathbb{Q} \) from \(\mathbb{E}^\mathbb{Q}(\cdot) \) for convenience. It is stated in (2.4) that the option value at maturity is just the payoff price at that time, since there are no more opportunities for exercising. Equation (2.5) implies that the value at exercise time \(t_{i-1} \) is the maximum value between the immediate payoff and the discounted conditional expectation of the option price at the \(i \)-th exercise time.

As this project will focus on the valuation of \(V_0(S_0) \), one could suppress the explicit discounting by introducing \(\tilde{h}_i(s) \) and \(\tilde{V}_i(s) \). They are defined as

\[
\tilde{h}_i(s) = D_{0,i}(s)h_i(s), \quad i = 1, \ldots, m, \tag{2.6}
\]

and

\[
\tilde{V}_i(s) = D_{0,i}(s)V_i(s), \quad i = 0, 1, \ldots, m. \tag{2.7}
\]

Whereas the \(V_i \) represents the value of the option in time-\(t_i \) units of currency, \(\tilde{V}_i \) expresses the value in time-\(t_0 \) units. From the definitions in (2.6) and (2.7) it can be concluded that

\[
\tilde{V}_m(s) = \tilde{h}_m(s)
\]

and

\[
\tilde{V}_{i-1} = D_{0,i-1}V_{i-1}(s)
\]

\[
= D_{0,i-1} \max\{h_{i-1}(s), \mathbb{E}(D_{i-1,i}V_i(S_i)|S_{i-1} = s)\}
\]

\[
= \max\{\tilde{h}_{i-1}(s), \mathbb{E}(\tilde{D}_{i-1,i}V_i(S_i)|S_{i-1} = s)\}
\]

\[
= \max\{\tilde{h}_{i-1}(s), \mathbb{E}(\tilde{V}_i(S_i)|S_{i-1} = s)\}.
\]
These results transform the recursion formulation of (2.4) and (2.5) into a simplified one:

\[
\tilde{V}_m(s) = \tilde{h}_m(s) \quad (2.8)
\]

\[
\tilde{V}_{i-1}(s) = \max\{\tilde{h}_{i-1}(s), \mathbb{E}(\tilde{V}_i(S_i)|S_{i-1} = s)\}. \quad (2.9)
\]

As one is prevented from exercising at time \(t_0\), at \(i = 1\) equation (2.9) is actually

\[
\tilde{V}_0(S_0) = \mathbb{E}(\tilde{V}_i(S_i)|S_0),
\]

which is the value of the option at the start of the contract. For the rest of the dissertation, all the valuation will be done in time-\(t_0\) units.

Continuation values are crucial in the valuation of American contracts. In time-\(t_0\) units of current, the continuation value \(\tilde{C}_i\) at state \(s\) and time \(t_i\) is defined as

\[
\tilde{C}_i(s) = \mathbb{E}(\tilde{V}_{i+1}(S_{i+1})|S_i = s), \quad (2.10)
\]

for \(i = 0, \ldots, m - 1\). This is the value with which \(\tilde{h}_i(s)\) compares against in (2.9). Therefore the continuation value is the value of keeping the option alive rather than exercising it. The key challenge faced by Monte Carlo approach in valuing American option, is the estimation of the continuation value. With this in mind, one now presents low-biased algorithms which use the idea of regression to estimate \(\tilde{C}_i\).

2.2 Low-biased estimators

The regression-based approach assumes that \(\tilde{C}_i(s)\) in (2.10) can be represented as a linear combination of basis functions from a countable \(\mathcal{F}_{t_{i-1}}\)-measurable set. This assumption is formally justified in [4] where the conditional expectation in (2.10) is an element of the \(L^2\) space of square-integrable functions. In practice, the method suggests that with a set of simulated Markov chain sample paths, each continuation value \(\tilde{C}_i(s)\) can be approximated by a linear combination of known functions of the current state. Typically least-square regression is used to estimate the best possible coefficients for the approximation.
Suppose that the continuation valuations can be represented by a finite set of basis functions. Then conditional expectation in (2.10) can be written as

$$E(\tilde{V}_{i+1}(S_{i+1})|S_i = s) = \sum_{r=1}^{M} \beta_{ir} \psi_r(s), \quad (2.11)$$

for some basis function $\psi_r : \mathbb{R}^d \mapsto \mathbb{R}$ and constants $\beta_{ir}, r = 1, \ldots, M$. This is then equivalent to

$$\hat{C}_i(s) = \beta_i^T \psi(s),$$

where

$$\beta_i^T = (\beta_{i1}, \ldots, \beta_{iM}), \quad \psi(s) = (\psi_1(s), \ldots, \psi_M(s))^T.$$

If one assumes that there exists a relation in the form of (2.11), then the vector β_i is given by

$$\beta_i = (\mathbb{E}(\psi(S_i)\psi(S_i)^T))^{-1}\mathbb{E}(\psi(S_i)\tilde{V}_{i+1}(S_{i+1})) \equiv B_\psi^{-1}B_{\psi\tilde{V}}. \quad (2.12)$$

In (2.12), B_ψ is an $M \times M$ matrix, which is assumed to be nonsingular, and $B_{\psi\tilde{V}}$ is a vector of length M. In side the expectation of (2.12), the variables (S_i, S_{i+1}) have the joint distribution of the state of the underlying Markov chain at time t_i and t_{i+1}.

The coefficients β_{ir} are estimated through observing the pairs $(S_{ij}, \tilde{V}_{i+1}(S_{i+1,j}))$, $j = 1, \ldots, b$, each consisting of the state at time t_i and the corresponding option value at time t_{i+1}. Suppose that there are independent paths $(S_{1j}, \ldots, S_{mj}), j = 1, \ldots, b$ and that the values $\tilde{V}_{i+1}(S_{i+1})$ are known. Then the least-square estimate of β_i through regression is in the form of

$$\hat{\beta}_i = \hat{B}_\psi^{-1}\hat{B}_{\psi\tilde{V}},$$

where \hat{B}_ψ and $\hat{B}_{\psi\tilde{V}}$ are the sample equivalents of B_ψ and $B_{\psi\tilde{V}}$. This means that \hat{B}_ψ is a $M \times M$ matrix with $q r$ entry

$$\frac{1}{b} \sum_{j=1}^{b} \psi_q(S_{ij}) \psi_r(S_{ij})$$

and $\hat{B}_{\psi\tilde{V}}$ is a size M vector with rth entry

$$\frac{1}{b} \sum_{k=1}^{b} \psi_q(S_{ik}) \tilde{V}_{i+1}(S_{i+1,k}).$$
Function values \hat{V}_{i+1} at pairs of consecutive nodes $(S_{ij}, S_{i+1, j}), j = 1, ..., b$ are used to calculate \hat{B}_ψ and $\hat{B}_\psi \hat{V}$. This is not possible in practice as $\hat{V}_{i+1,j}$ is unknown at time t_{i+1}. Therefore its estimation, \hat{V}_{i+1}, has to be derived from the simulated paths. For this, Tsitsiklis and Van Roy in [12, 13] suggests choosing the maximum between the immediate exercise value \hat{h}_{i+1} and the estimated continuation value \hat{C}_i. This form of estimation follows from the original dynamic programming problem in (2.9). In [9] Longstaff and Schwartz however suggests a different method, which is shown later shortly. Once the $\hat{\beta}_i$ is obtained, it can then be used to define

$$\hat{C}_i(s) = \hat{\beta}_i^T \psi(s), \quad (2.13)$$

the estimate of the continuation value at an arbitrary point s in the state space \mathbb{R}^d. Once the continuation values have been estimated, the backward recursion from the dynamic programming in (2.8, 2.9) can be started to estimate the price at time t_0.

2.2.1 Longstaff-Schwartz algorithm

With the technique of estimating continuation values through regression discussed, one can now present the Longstaff-Schwartz algorithm.

1. Start by simulating b independent sample paths $\{S_{ij}, ..., S_{mj}\}, j = 1, ..., b$ of Markov chain

2. At the final state, assign each $\hat{V}_{mj} = \hat{h}_m(S_{mj}), j = 1, ..., b$.

3. Apply the following backward recursion: for $i = m - 1, ..., 1$,
 - evaluate $\hat{\beta}_i = \hat{B}_\psi^{-1} \hat{B}_\psi \hat{V}$ with the estimated values $\hat{V}_{i+1,j}, j = 1, ..., b$ by least-square regression;
 - estimate the function value as
 $$\hat{V}_{ij} = \begin{cases}
 \hat{h}_i(S_{ij}), & \hat{h}_i(S_{ij}) \geq \hat{C}_i(S_{ij}); \\
 \hat{V}_{i+1,j}, & \hat{h}_i(S_{ij}) < \hat{C}_i(S_{ij}).
 \end{cases} \quad (2.14)$$

 where \hat{C}_i is valued in the same way as (2.13).

4. Finally let $\hat{V}_0 = (\hat{V}_{11} + ... + \hat{V}_{1b})/b$.

10
The convergence of Longstaff-Schwartz method, as $b \to \infty$, was proved by Clément, Lamberton and Protter in [4]. This sample estimate limit is the true price \tilde{V}_0 if the equality in (2.11) holds, meaning that only finite number of basis functions are required. If (2.11) does not hold then the limit is the value under a suboptimal exercise policy, thus it underestimates the true value $\tilde{V}_0(S_0)$. In practice, the latter is true and the method of approximating function values in (2.14) leads to low-biased estimates.

The choice for the basis functions varies from polynomials to Fourier series. In [9], the set of (weighted) Laguerre polynomials were used. They are of the form

$$L_n(S) = \exp(-S/2) \frac{e^S}{n!} \frac{d^n}{dS^n} (S^n e^{-S}).$$

In this dissertation, one uses

$$P_n(S_{ij}) = \left(\frac{S_{ij} - \theta_j}{\theta_j} \right)^n, \quad \text{for } n = 0, 1, \ldots, N,$$

(2.15)

where $\theta_j = \frac{1}{b} \sum_{j=1}^{b} S_{ij}$. This is a simple set of polynomials that is damped by the average of the samples at each time step. The polynomials in (2.15) should suffice for the pricing of the vanilla put.

2.2.2 Alternative low-biased estimator

It is possible to form an alternative low-biased estimators with the coefficients $\hat{\beta}_i$ obtained from the steps of Longstaff-Schwartz algorithm. One defines a stopping time

$$\hat{\tau} = \min\{i : \hat{h}_i(S_i) \geq \hat{C}_i(S_i)\},$$

where $\hat{C}_i(S_i)$ is obtained with $\hat{\beta}_i$ through (2.13). The stopping time defines an exercise policy. The policy states that the holder must exercise on the first time when the immediate exercise value is as large as the estimated continuation value. This leads to an estimator for a single path defined as

$$\hat{v} = \hat{h}_{\hat{\tau}}(S_{\hat{\tau}}),$$

which is the payoff from stopping at time $\hat{\tau}$. This estimator is low-biased because no exercise policy can be better than an optimal policy. Conditioning on the mesh generated by the sample paths, fixes the stopping rule and leads to

$$\mathbb{E}(\hat{v}|S_1, \ldots, S_m) \leq V_0(S_0),$$

11
where \(S_i = (S_{i1}, ..., S_{ip}) \). The same inequality holds true for unconditional expectation. Broadie and Glasserman proved in [2] that under certain conditions, this low estimator is asymptotically unbiased, meaning that \(\mathbb{E}(\hat{v}) \rightarrow V_0(S_0) \) as \(b \rightarrow \infty \).

This alternative low estimator can be implemented in the following algorithm:

1. First, simulate a new set of sample paths \(S_{0j}, S_{1j}, ..., S_{mj}, j = 1, ..., p \), of the underlying Markov chain, independent of the paths used to calculate \(\hat{\beta}_i \).

2. Initialise \(\hat{v}_j = \tilde{h}_m(S_{mj}) \) and \(EF_j = 0, j = 1, ..., p \). \(EF_j \) are flags indicating whether the option has been exercised (indicated by 1) or not (indicated by 0) on the \(j \)-th path.

3. Apply forward recursion: for \(i = 1, ..., m - 1 \),
 - check if each path has 0 in their corresponding flag entry, and if
 \[
 \hat{h}_i(S_{ij}) \geq \hat{C}_i(S_i), \quad j = 1, ..., p,
 \]
 where the estimate of continuation values are calculated with \(\hat{\beta}_i \) obtained from Longstaff-Schwartz algorithm;
 - for the paths with both conditions satisfied, assign \(\hat{h}_i(S_{ij}) \) and 1 to their corresponding \(\hat{v}_j \) and \(EF_j \).

4. The final estimate is the mean of \(\hat{v}_1, ..., \hat{v}_p \).

2.3 High-biased estimator

So far in this chapter, two different low-biased estimators for the American options were presented. It is also crucial to bound the true value \(V_0(S_0) \) from above. The rest of the chapter will be devoted to a high-biased estimator, which is obtained through dual formulations. The theoretical work on the dual formulations, in which the price is represented through a minimization problem, were done by Haugh and Kogan in [8] and Rogers in [10].
2.3.1 Dual problem

The dynamic programming recursion in (2.9) leads to the result that

\[\hat{V}_i(S_i) \geq \mathbb{E}(\hat{V}_{i+1}(S_{i+1})|S_i), \]

(2.16)

for all \(i = 0, 1, \ldots, m - 1 \). The inequality in (2.16) is the main characteristic of a supermartingale. Recursion (2.9) also implies that \(\hat{V}_i(S_i) \geq \tilde{h}_i(S_i) \) for all \(i \). In fact, the process \(\hat{V}_i(S_i), i = 0, 1, \ldots, m \), is the smallest supermartingale dominating \(\tilde{h}_i(S_i) \). This characterisation is extended in [8] to formulate the pricing of American options as a minimisation problem.

A continuous-time duality result is proved in [10] but a discrete-time version of this presented here. Suppose \(M = \{M_i, i = 0, \ldots, m\} \) is a martingale with \(M_0 = 0 \). The optional stopping property of martingales states that, for any stopping time \(\tau \) with values in \(\{1, \ldots, m\} \),

\[\mathbb{E}(\hat{h}_\tau(S_\tau)) = \mathbb{E}(\hat{h}_\tau(S_\tau) - M_\tau) \leq \mathbb{E}(\max_{k=1,\ldots,m} (\tilde{h}_k(S_k) - M_k)). \]

This leads to

\[\mathbb{E}(\hat{h}_\tau(S_\tau)) \leq \inf_M \mathbb{E}(\max_{k=1,\ldots,m} (\tilde{h}_k(S_k) - M_k)), \]

(2.17)

where the infimum is taken over all possible martingales with initial value 0. As the inequality in (2.17) is true for all \(\tau \), it is also true with the supremum over \(\tau \). It can then be concluded that

\[\sup_\tau \mathbb{E}(\hat{h}_\tau(S_\tau)) \leq \inf_M \mathbb{E}(\max_{k=1,\ldots,m} (\tilde{h}_k(S_k) - M_k)). \]

With \(V_0(S_0) = \sup_\tau \mathbb{E}(\hat{h}_\tau(S_\tau)) \), one arrives at the dual problem

\[V_0(S_0) \leq \inf_M \mathbb{E}(\max_{k=1,\ldots,m} (\tilde{h}_k(S_k) - M_k)). \]

(2.18)

One now proceeds to show that the inequality in (2.18) can be replaced with equality. This is done by constructing a martingale \(M \), that satisfies the required equality relationship. Define

\[\Delta_i = \hat{V}_i(S_i) - \mathbb{E}(\hat{V}_i(S_i)|S_{i-1}), \]

for \(i = 1, \ldots, m \),

(2.19)
and also let
\[M_i = \Delta_1 + \cdots + \Delta_i, \quad \text{for } i = 1, \ldots, m, \tag{2.20} \]
with \(M_0 = 0 \). To prove that the process \(M_i \) is a martingale, firstly observe that
\[
\mathbb{E}(\Delta_i|S_{i-1}) = \mathbb{E}(\tilde{V}_i(S_i) - \mathbb{E}(\tilde{V}_i(S_i)|S_{i-1}))
\]
\[
= \mathbb{E}(\tilde{V}_i(S_i)|S_{i-1}) - \mathbb{E}(\tilde{V}_i(S_i)|S_{i-1})
\]
\[
= 0 \tag{2.21}
\]
for all \(i = 1, \ldots, m \). This then leads to conclusion that
\[
\mathbb{E}(M_i|S_{i-1}) = \mathbb{E}(\Delta_1 + \cdots + \Delta_i|S_{i-1})
\]
\[
= \Delta_1 + \cdots + \Delta_{i-1} + \mathbb{E}(\Delta_i|S_{i-1})
\]
\[
= M_{i-1}
\]
for all \(i = 1, \ldots, m \). Hence \(M_i \) is a martingale.

The following uses an induction argument to show that
\[
\tilde{V}_i(S_i) = \max\{\tilde{h}_i(S_i), \tilde{h}_{i+1}(S_{i+1}) - \Delta_{i+1}, \ldots,
\]
\[
\tilde{h}_m(S_m) - \Delta_m - \cdots - \Delta_{i+1}\}, \tag{2.22}
\]
for all \(i = 1, \ldots, m \). This is true for \(i = m \) as \(\tilde{V}_m(S_m) = \tilde{h}_m(S_m) \). Suppose \(\text{(2.22)} \) is true at \(i \), then by using \(\text{(2.9)} \) and \(\text{(2.19)} \) it is realised that
\[
\tilde{V}_{i-1}(S_{i-1}) = \max\{\tilde{h}_{i-1}(S_{i-1}), \mathbb{E}(\tilde{V}_i(S_i)|S_{i-1})\}
\]
\[
= \max\{\tilde{h}_{i-1}(S_{i-1}), \tilde{V}_i(S_i) - \Delta_i\}
\]
\[
= \max\{\tilde{h}_{i-1}(S_{i-1}), \tilde{h}_i(S_i) - \Delta_i, \ldots, \tilde{h}_m(S_m) - \Delta_m - \cdots - \Delta_i\}.
\]
This leads to the conclusion that \(\text{(2.22)} \) is true at \(i - 1 \). Thus, using Mathematical induction, the result in \(\text{(2.22)} \) holds for all \(i \).

The price of the option at time 0 is in the form of
\[
V_0(S_0) = \mathbb{E}(\tilde{V}_1(S_1)|S_0) = \tilde{V}_1(S_1) - \Delta_1.
\]
Finally, by substituting \(\tilde{V}_1(S_1) \) in the above equation with \(\text{(2.22)} \), it is deduced that
\[
V_0(S_0) = \max_{k=1,\ldots,m} (\tilde{h}_k(S_k) - M_k). \tag{2.23}
\]
This result verifies that equality holds in (2.18) and that the minimisation is achieved using the martingale set out in (2.19) and (2.20).

The challenge now is to find a martingale \(\hat{M} \) which is close to the optimal martingale \(M \), so that

\[
\max_{k=1,...,m} (\hat{h}_k(S_k) - \hat{M}_k) \tag{2.24}
\]

can be used to calculate a high-biased estimator for the American option price.

2.3.2 Martingales for the high estimate algorithm

There are different ways to construct the martingales in (2.24), this project however focuses on the approach that uses the approximate value functions. The approximate value function is \(\hat{V}_i(s) = \max\{\hat{h}_i(s), \hat{C}_i(s)\} \). The coefficients \(\hat{\beta}_i \) obtained through Longstaff-Schwartz algorithm are used again here to calculate \(\hat{C}_i \)'s, the estimates of the continuation values.

To evaluate the martingales along a simulated path \(S_0, S_1, ..., S_m \), one needs the martingale differences in (2.19). From an approximate value function, this is done by evaluating

\[
\hat{\Delta}_i = \hat{V}_i(S_i) - \mathbb{E}(\hat{V}_i(S_i)|S_{i-1}). \tag{2.25}
\]

The approximate value function on the right hand side can be evaluated through the simulated path of Markov chain. The conditional expectation term however, requires a nested simulation on the sample path from before. This is done by generating \(n \) successors \(S_i^{(1)}, ..., S_i^{(n)} \), from each step \(S_{i-1} \) of the path. Thus, the estimate for the conditional expectation of \(V_i(S_i) \) given \(S_{i-1} \) is the average of those successors, \(\frac{1}{n} \sum_{l=1}^{n} \hat{V}_i(S_i^{(l)}) \). This then implies that the martingale differences are

\[
\hat{\Delta}_i = \hat{V}_i(S_i) - \frac{1}{n} \sum_{l=1}^{n} \hat{V}_i(S_i^{(l)}), \tag{2.26}
\]

for all \(i = 1, ..., m \). It is easy to check that these estimates are indeed the differences of the required martingales. This requires verifying that they satisfy the conditionally
unbiased property in (2.21). Taking the conditional expectation of (2.26) leads to

\[
\mathbb{E}(\hat{\Delta}|S_{i-1}) = \mathbb{E}(\hat{V}_i(S_i) - \frac{1}{n} \sum_{l=1}^{n} \mathbb{E}(\hat{V}_i(S_i^{(l)}|S_{i-1}) \\
= \mathbb{E}(\hat{V}_i(S_i)|S_{i-1}) - \frac{1}{n} \sum_{l=1}^{n} \mathbb{E}(\hat{V}_i(S_i^{(l)}|S_{i-1}) \\
= 0.
\]

Using the \(\hat{\Delta}\) from (2.26), an estimator for the American option can be found through (2.24). This estimator is high-biased follows trivially from the inequality in (2.17).

The algorithm for producing the high-biased estimate has the following steps:

1. Simulate \(q\) independent paths \(\{S_{1j}, \ldots, S_{mj}\}, j = 1, \ldots, q\) of the Markov chain.
2. Set \(\hat{M}_{0j} = 0\) and \(U_{0j} = 0\) for all \(j\).
3. Start a forward recursion: for \(i = 1, \ldots, m - 1\)
 - for each of the \(S_{i-1,j}\), simulate \(n\) successors \(S_{i,j}^{(l)}, l = 1, \ldots, n\);
 - calculate the martingale differences \(\hat{\Delta}_{ij}\) using (2.26), noting that all the \(\hat{C}_i\) are generated using the coefficients \(\hat{\beta}_i\) from the Longstaff-Schwartz algorithm;
 - update so that \(\hat{M}_{ij} = \hat{M}_{i-1,j} + \hat{\Delta}_{ij}\) for all \(j\), then set
 \[U_{ij} = \max(U_{i-1,j}, \hat{h}_{ij}(S_{ij}) - \hat{M}_{ij}).\]
4. For the final step assign \(U_{mj} = \max(U_{m-1,j}, \hat{h}_{ij}(S_{ij}))\). The final estimate is the average of the \(U_{mj}\) for \(j = 1, \ldots, q\).

This concludes the theories behind the three different algorithms that are used to price American options. For the next chapter, the algorithms are put into practice to produce some results for assessing their performance.
Chapter 3

Implementation and numerical results

This chapter presents the results obtained from implementing the algorithms of the three estimators described by the previous chapter. The computational codes for these algorithms are found in the appendix section of this project. There are comparisons made for these estimates with estimates produced by a method from the finite difference approach.

The algorithms aim to provide estimates for the price of vanilla American put options, with one single underlying asset $S(t)$. The contract has maturity $T = 1$, strike $K = 25$, no dividends and the payoff from (2.2). It is assumed that the asset value follows the geometric Brownian motion in (2.3) with the instantaneous interest rate $r = 5\%$ and the volatility $\sigma = 0.2$.

Figure 3.1: Vanilla American priced by the penalty method with 10000 time steps
For the finite difference estimates, one uses the Crank-Nicholson scheme with the penalty method. The idea of this method is to 'penalise' if the inequality in (1.1) is violated, by solving

$$Lu = \rho \max(g - u, 0)$$

with a positive penalty parameter $$\rho$$. More details on this method is presented in Chapter 28 of [5]. Figure 3.1 is a graph showing the estimates for the American puts calculated with penalty method and 10000 time steps. The error tolerant level for this method is set at $$10^{-8}$$, which implies that the produced estimates give a very good representation of the true values. The curve in Figure 3.1 is shown here to get an overview of the option prices with a range of initial stock values.

3.1 Low-biased estimates

This section presents some numerical results for the low-biased estimates. As the option is path-dependent, the asset values at each of the exercise times need to be simulated for all sample paths. For this, Euler-Maruyama method is used to approximate the stochastic differential equation in (2.3). Hence for all $$i$$, with a given $$\hat{S}_i$$, the asset estimate for the next time step is produced by the discretisation:

$$\hat{S}_{i+1} = \hat{S}_i(1 + rh + \sigma \sqrt{h}Z_i), \quad (3.1)$$

where $$h$$ is the size of the interval between two consecutive exercise times, and $$Z_i$$ is a normally distributed random variable with mean 0 and variance 1. Samples of $$Z_i$$ are obtained through Marsaglia’s ziggurat algorithm, a random number generator. For the implementation of Longstaff-Schwartz algorithm, one has discretised the duration of the option into 100 equal sized exercise times. The number of sample paths taken for the Monte Carlo simulation are 10000. The basis functions, used for the least-square regressions applied along the paths, are the first 4 terms of the polynomials stated in (2.15). Thus, the continuation values, $$\hat{C}_i$$, are estimated by

$$\hat{C}_i(s) = \sum_{n=0}^{4} \hat{\beta}_i^n \left(\frac{S_{ij} - \theta_j}{\theta_j} \right)^n.$$

As well as estimating the value of the option at time $$t_0$$, a record of the coefficients $$\hat{beta}_i$$ for all $$i = 1, ..., m - 1$$ estimated through regression is also kept in memory for later
uses in the other algorithms. The alternative low-biased estimates are generated with a second set of 10000 sample paths, independent of the paths used for the Longstaff-Schwartz estimates. The $\hat{\beta}_i$ obtained from the regressions are used to calculate the approximated continuation values at each of the 100 exercise times.

3.1.1 Some analysis on the results

Table 3.1: Low-biased estimates for vanilla American puts

<table>
<thead>
<tr>
<th>S_0</th>
<th>FD</th>
<th>LSM</th>
<th>MC error</th>
<th>Low(alt)</th>
<th>MC error</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>4.046</td>
<td>4.039</td>
<td>0.014</td>
<td>3.572</td>
<td>0.031</td>
</tr>
<tr>
<td>23</td>
<td>2.547</td>
<td>2.491</td>
<td>0.019</td>
<td>2.336</td>
<td>0.026</td>
</tr>
<tr>
<td>25</td>
<td>1.466</td>
<td>1.465</td>
<td>0.016</td>
<td>1.437</td>
<td>0.022</td>
</tr>
<tr>
<td>27</td>
<td>0.866</td>
<td>0.801</td>
<td>0.013</td>
<td>0.835</td>
<td>0.017</td>
</tr>
<tr>
<td>29</td>
<td>0.471</td>
<td>0.399</td>
<td>0.009</td>
<td>0.462</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Table (3.1) displays the pricing results of finite difference estimates (FD), Longstaff-Schwartz estimates (LSM) and the alternative low-biased estimates (Low(alt)) for 5 different initial asset values. Different S_0 were chosen to represent in-the-money, at-the-money and out-of-the-money options. As well as the estimates for the price, the Monte Carlo standard errors (MC error) for the low-biased estimates were also shown in the table. The results in Table 3.1 clear show that the prices estimated by both low-biased algorithms are indeed consistently lower than the true values of the contracts.

In Figure 3.2, the two graphs present the findings from Table 3.1. It can be seen that all the low-biased estimates are lower than the finite difference mean. For each initial asset point of the graphs, there are also error bars showing the prices that are within 3 standard errors of the Monte Carlo simulation means. There are approximately 99.7% chance that the true means for the estimates lie within the error bars. When they are compared with LSM estimates, the FD estimates appear to be inside the error bars at the asset values 21, 23 and 25, but outside the bars for the other values. This suggests that for values 27 and 29, the LSM estimates are significantly lower than the FD estimates with 99.7% confidence level. Whereas the FD estimates are shown to be outside the error bars at asset values 21, 23 and 25, implying that the Low(alt) estimates are significantly lower than them.
observation may suggest that the Longstaff-Schwartz algorithm is best used for pricing out-of-the-money contracts, whereas the alternative low-biased for pricing in-the-money contracts.

Figure 3.2: Compare low-biased estimates with FD estimates

3.1.2 Sources of errors of the estimates

There are three different sources of errors that affect the accuracies of the low-biased estimates. The first one is associated with the discretisation of the exercise dates, which makes the exercise policy of the estimators suboptimal. To reduce this, more time steps can be taken in the implementation of the algorithm. Another source of errors comes from the least-square regression used to estimate the continuation values, \tilde{C}_t. As the regression employs only finite numbers of polynomials for basis functions, continuation values are not represented with total accuracy. One could increase the number of basis functions to form better estimates for the continuation values. Finally, there are also the usual errors from using finite number of sample paths for Monte Carlo simulations. To reduce the standard errors from Monte Carlo, a larger number of sample paths can be taken for estimation.

After listing the possible ways that the accuracy of the estimates are affected, one would like to investigate the effects on the estimates caused by the limitations in practice. This is done by varying the parameters and inputs that cause inaccuracies
and uncertainties in the estimates. Figure 3.3 demonstrates the effects of varying the number of time steps and the number of basis functions that can have for both of the low-biased estimates. The initial asset value used for both estimates are 25, so the contract is at-the-money. The number of discrete time steps used to test both estimates are 2, 4, 8, ..., 128, doubling each time. Two more terms from the damped polynomials in (2.15) were added to the basis function set, in order to draw comparisons with the previous implementations which use the set of first four polynomial terms. A total number of 10^6 sample paths were used to reduce the effect of Monte Carlo simulation errors.

![Figure 3.3: The effects of varying the number of time steps and the number of basis functions on the low-biased estimates](image)

There are mixed results from the graphs in Figure 3.3. Error bars are used in the graphs to show the range of prices which are 3 standard errors within the estimates. Typical standard errors for the estimates of both algorithms are 0.0017. By comparing this value for standard errors to the values of 0.016 and 0.022 from Table 3.1, it is clear that the increase in the number of Monte Carlo simulations has reduced errors for both estimates. Examine now the results for the Longstaff-Schwartz estimates (LSM estimates). They are clearly affected by both the changes in the number of
basis functions and the number of time steps. It appears that the estimates with the higher number of basis functions consistently outperform the one with less basis functions. This observation is most clear for time steps 2^5, 2^6 and 2^7, since there are no overlappings for the error bars in these time steps. Within the same set of basis functions, the estimates are affected by the number of time steps. This is most significant at very low number of time steps, with a large increase between using 2 and 4 as the numbers of time steps. Before they drop lower at 2^7 time steps, the estimates were quite consistent between 2^5 and 2^6, demonstrated by having a clear overlapping for their error bars. The decrease in the value of the estimates at 2^7 is most significant for the implementation using only four basis functions. Its estimate at 2^7 is more than 3 standard errors away from the estimate at 2^6. This may indicate that there are no complete independency between the errors caused by the number of basis functions and by the number of discrete exercise dates. The results from alternative low-biased estimates (Low(alt) estimates) are quite different to the ones from LSM estimates. There are almost no indications of difference between two sets of estimates using different number of basis functions, especially for 2^5, 2^6 and 2^7 numbers of time steps. This is shown by the consistent overlappings of their error bars. There are also less variations caused by changing the number of exercise dates, apart from the results with really low numbers. This suggests that the alternative low-biased estimates are less likely to be affected by changes made in the number of basis functions and in the number of exercise dates. Whereas the opposite seems to be true for LSM estimates.

3.2 High-biased estimate

This section presents results obtained through implementing the high-biased estimate algorithm. It also shows the effects on the estimates when antithetic variables are used in the algorithm with the view of reducing possible errors.

3.2.1 Results for two different numbers of sub-paths

The parameters used in the implementation are the same as the low-biased estimates. The number of discrete time steps used for all the high-biased estimates is 100. The number of Monte Carlo simulations used is 1000. One chooses 10 and 100 as the
numbers of sub-paths used for estimating $\hat{\Delta}_t$ from (2.26). This is done so that the effects of changing in the number of sub-paths can be observed. These results are then recorded in Table 2.24.

Table 3.2: High-biased estimates for a vanilla American put

<table>
<thead>
<tr>
<th>S_0</th>
<th>FD</th>
<th>10 sub-paths</th>
<th>MC error</th>
<th>100 sub-paths</th>
<th>MC error</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>4.046</td>
<td>4.642</td>
<td>0.020</td>
<td>4.216</td>
<td>0.008</td>
</tr>
<tr>
<td>23</td>
<td>2.547</td>
<td>3.055</td>
<td>0.021</td>
<td>2.719</td>
<td>0.009</td>
</tr>
<tr>
<td>25</td>
<td>1.466</td>
<td>1.871</td>
<td>0.019</td>
<td>1.680</td>
<td>0.007</td>
</tr>
<tr>
<td>27</td>
<td>0.866</td>
<td>1.125</td>
<td>0.016</td>
<td>1.013</td>
<td>0.007</td>
</tr>
<tr>
<td>29</td>
<td>0.471</td>
<td>0.684</td>
<td>0.012</td>
<td>0.620</td>
<td>0.007</td>
</tr>
</tbody>
</table>

There are two clearly distinct observations that can be made from Table 2.24. First, all of the estimates indeed provide upper bounds to the true values, which are represented by the finite difference values (FD). It also shows the effect of having different sub-paths on the accuracy of the estimates. The values from 100 sub-paths are consistently lower than the values produced from 10 sub-paths. As well as providing better estimates, the simulations with 100 sub-paths also have lower standard errors, which are half of the ones produced by the estimates with 10 sub-paths. The reason for this increase of accuracies for the estimates is simply that having more sub-paths provides better approximation to the martingale differences in (2.26).

The curves in Figure 3.4 reiterate the observations made from Table 3.2. As before the error bars in the graph show the range of prices within 3 standard errors of the simulation estimates. By considering them, one observes that all the estimates are significantly higher than the finite difference estimates. The estimates with 100 paths are significantly lower in values, especially for the out-of-the-money options, implying that they produce significantly better results.

3.2.2 Antithetic variables

It is now established that the accuracy of the high-biased estimates benefits from the increase in the number of sub-paths taken in each simulation. The amount of computational cost has however increased. A typical time taken to run the implementation with 10 sub-paths is 0.574 seconds, whereas for the one with 100 sub-paths it is 5.684 seconds, which is approximately 10 times longer. This is fully expected as there were
High-biased estimates for American put options

V_0, S_0

FD

100 sub-paths

10 sub-paths

Figure 3.4: High-biased estimates for American puts using different numbers of sub-paths

10 times more simulations done at each step of the calculations. It is possible to apply variance reduction techniques to provide better estimates without increasing the number of sub-paths. One of those techniques involves introducing antithetic variables into the algorithm.

As the successors in the sub-paths of high-biased algorithm can also be generated by the Euler-Maruyama method in (3.1), one can estimate the approximate values in the second term on the right hand side of (2.25) with

$$\hat{V}_i(S_{l+1}^{(l)}) \approx \hat{V}_i(S_{l-1}(1 + rh)) + \frac{\partial \hat{V}}{\partial s} \sigma \sqrt{h} S_{l-1} Z_{l+1}^{(l)}.$$ \hspace{1cm} (3.2)

This implies that the variability of \hat{V}_i comes from the stochastic term. Antithetic variables can be used to reduce (3.2) to the leading order term, as the value is approximately linear. This means that for every sub-path, as a sample of random variable $Z^{(l)}$ is generated, $-Z^{(l)}$ is introduced as another sample. Chapter 4 of [6] provides more details on the antithetic variates technique.

In Table 3.3, the estimates produced by using standard algorithm with 100 sub-paths (Std(100)) are compared with the estimates provided by adding antithetic variables into the algorithm and using only 10 sub-paths (AntiVar(10)). The last column of Table 3.3 shows the ranges that are within 3 standard errors of the estimates with
antithetic variables. There are two very clear improvements made by introducing the antithetic variables into the high-biased algorithm. The first observation is that the standard errors for both implementations of the algorithm is practically the same. A typical computing time for producing estimates with antithetic variables is 1.123 seconds, about a fifth of the time required for the estimates of Std(100) algorithm. The time is only about twice the one required for the estimates with 10 sub-paths but without antithetic variables. This demonstrates that, by having antithetic variables there are indeed reductions made to variance in the form of standard errors. It can be seen that almost all of the estimates from Std(100) algorithm are higher than and outside of the corresponding ranges provided by AntiVar(10) algorithm. This is significantly enough to suggest that the latter algorithm produces lower estimates than the former. This means that the AntiVar(10) estimates are closer to the true values than the Std(100) estimates. With the two observations from above, one concludes that including antithetic variables in the high-biased algorithm leads to better estimates for the true price of American puts.

This then concludes the current chapter on the numerical results obtained through the implementation of the three different algorithms. The next and final chapter will be a summary of the dissertation and provides some closing remarks on the topic of pricing American options using Monte Carlo simulations.
Chapter 4

Summary and concluding comments

In this dissertation, three different pricing algorithms of American option contacts using Monte Carlo simulation were investigated. The pricing of the American style options using simulation, aims to solve discretised dynamically programming problem. This leads to the approximation of the continuation values for each discrete exercise date. All of the algorithms presented here use regression techniques, i.e. the least-square regression, to estimate the continuation values. Longstaff-Schwartz algorithm first simulates one single set of stock sample paths. By stepping back in time it then applies the regression to estimate the continuation values, deriving approximate values to the price at time zero in the process. The alternative low-biased algorithm uses the regression results from Longstaff-Schwartz algorithm and an sub-optimal exercise policy, to price the option with an independent set of sample paths. The theory developed on dual problems shows that the valuation of the option is a maximisation problem involving a certain class of martingales. The high-biased algorithm looks to estimate the conditional expectations in the differences of these martingales using sub-paths in its simulation. The regression results from Longstaff-Schwartz algorithm are again used in this final algorithm.

The three algorithms were then implemented to price vanilla American puts, so that numerical results were produced for analysis. Values obtained from a finite difference scheme were used as reference to represent the true prices of these contracts. A simple set of damped polynomials were chosen as the basis functions used for regression. The results showed that both Long-Schwartz and the alternative biased-
low algorithms produced estimates that were consistently lower than the true price. There were also observations that the Longstaff-Schwartz algorithm produced closer estimates for out-of-the-money contracts, whereas the alternative low-biased algorithm were better for in-the-money contracts. It is then suggested that the accuracy of the estimates is affected by three different sources of errors. They are from the discretisation of the exercise dates, the estimation of continuation values with finite number of basis functions and the finiteness of the Monte Carlo simulations. The effects of alterations in these areas on the estimates were examined. It was shown that standard errors were reduced by having more Monte Carlo simulations. There were significantly indications that the estimates from Longstaff-Schwartz algorithm varied for having different numbers of time steps and different numbers of basis functions. This is however not the case for the alternative low-biased estimates as they do not show any significant variations. The results from high-biased algorithm confirmed that the estimates are consistently higher than the true values. The effects of different numbers of sub-paths were evident, such that having more sub-paths increased the accuracy of the results but in the expense of spending more computational time. This then leads to an investigation on introducing antithetic variables into the algorithm. The resulting table shows that the estimates using 10 sub-paths and antithetic variables were as accurate as, if not better than, the estimates produced by only using 100 sub-paths. The computing cost for the former estimates were a fifth of the latter estimates.

There are few possible improvements and extensions that can be made for this dissertation. One of which is to apply these algorithms to more exotic American options, especially the contracts with high dimensions. As it was discussed in the introduction, the finite difference approach works very well for options at low dimensions but suffers from the “curse of dimensionality” for high dimensions. It would be of great interest to investigate whether in practice the algorithms provide effective lower and upper bounds with less computational time in comparison to finite difference methods. Another area that could be looked at is how to utilise these algorithms in deriving Greeks of the contracts. The Longstaff-Schwartz algorithm’s estimate to the values at each time step is discontinuous, which would be a problem for using the path-wise sensitivity method for the Greeks. Effects of applying other variance
reduction techniques to the high-biased estimates could also be looked at. One such technique extends the idea of (3.2) further. By taking the expectation of $\hat{V}_i(S_i)$ given S_{i-1}, one concludes that

$$E(\hat{V}_i(S_i)|S_{i-1}) \approx \hat{V}_{i-1}(S_{i-1}(1 + h)),$$

which leads to the realisation that

$$\hat{V}_i(S_i) - E(\hat{V}_i(S_i)|S_{i-1}) \approx \frac{\partial \hat{V}_i}{\partial s} \sigma \sqrt{h} S_{i-1} Z_i.$$

This suggests that one could look to estimate the martingale differences in (2.26) with

$$\hat{\Delta}_i = \frac{\partial \hat{V}_i}{\partial s} \sigma \sqrt{h} S_{i-1} Z_i,$$

where $\frac{\partial \hat{V}_i}{\partial s}$ can be calculated by simply differentiating the estimated continuation values. As the continuation values are approximated using polynomials, the estimates of the partial derivatives can be easily calculated. Valuing $\hat{\Delta}_i$ this way requires less computing time than the original high-biased algorithm as well as the one with antithetic variables. This is essentially because there are no sub-paths required for this approach. It would be interesting to see whether this works in practice and how it compares to the existing results from this dissertation.
Appendix A

Appendix

A.1 The implementation of Longstaff-Schwartz algorithm

% Pricing American Put using Longstaff-Schwartz method
% Stock underlying dynamics: dS = r*S dt + sig*S dW

clear all; close all
randn('state',0)
format long
savefile = 'Beta_2.mat';

tic;

r = 0.05;
sig = 0.2;
T = 1;
S0 = 23;
K = 25;
N = 100;

M = 1e+4;

Beta_save = cell(2,1);
sum1 = zeros(2,1);
sum2 = sum1;

h = T/N;

% Discount value for each time step:
Disc = exp(-r*h);
% Recording betas
beta = zeros(4,N-1);
beta1 = zeros(6,N-1);

% Simulate M independent paths first,
% for regression.

% S = ones(M, N+1);
S(:,1) = S0*ones(M,1);
for n = 1:N
 dW = sqrt(h)*randn(M,1);
 S(:,n+1) = S(:,n).*(1+r*h+sig*dW);
end

% Discount all values to become time-0 units
DiscAll = cumprod(Disc*ones(M,N),2);
CE = DiscAll.*max(K-S(:,2:end),0);
V1 = CE(:,end);
V2 = V1;
for q = (N:-1:2)

A = S(:,q);
eA = mean(A);

% L-S recommends taking only in-the-money nodes
index = logical(max(K-A,0));
index = true(M,1);
X = A(index);
Y1 = V1(index);
Y2 = V2(index);
eX = mean(X);

% First set has (1, S, S^2, S^3):
regression_matrix_1 = [ones(size(X,1),1),(X-eX)/eX,((X-eX)/eX).^2,...
 ((X-eX)/eX).^3];

% Second has (1, S, S^2, ... , S^5):
regression_matrix_2 = [ones(size(X,1),1),(X-eX)/eX,((X-eX)/eX).^2,...
 ((X-eX)/eX).^3,((X-eX)/eX).^4,((X-eX)/eX).^5];

% Regression are done by finding the beta's.
beta(:,q-1) = regression_matrix_1\Y1;
beta1(:,q-1) = regression_matrix_2\Y2;

% Estimated continuation values:
CC1 = [ones(size(A,1),1) (A-eA)/eA ((A-eA)/eA).^2 ((A-eA)/eA).^3]...
 *beta(:,q-1);
CC2 = [ones(size(A,1),1) (A-eA)/eA ((A-eA)/eA).^2 ...
 ((A-eA)/eA).^3 ((A-eA)/eA).^4 ((A-eA)/eA).^5]*beta1(:,q-1);

 % Comparing exercise values and continuation values
 index1 = (CE(:,q-1)>=CC1);
 index2 = (CE(:,q-1)>=CC2);

 % Longstaff-Schwartz method:
 V1(~index1) = V1(~index1);
 V2(~index2) = V2(~index2);

 % Tsitsiklis and Van Roy:
 % V1(~index1)= CC1(CE(index,q-1)<CC1);
 % V2(~index2)= CC2(CE(index,q-1)<CC2);

 V1(index1)= CE(index1,q-1);
 V2(index2)= CE(index2,q-1);

end

sum1(1) = sum(V1);
sum1(2) = sum(V2);
sum2(1) = sum((V1).^2);
sum2(2) = sum((V1).^2);

VLS = sum1/M
sd = sqrt((sum2/M-VLS.^2)/M)

Beta_save{1} = beta;
Beta_save{2} = beta1;

 % Saving the state of the generator
rstate = randn('state');

toc

% Save results for betas in file for Low and High-biase valuation.
save(savefile, 'Beta_save', 'S0', 'r', 'K', 'T', 'sig', 'rstate', 'N');

A.2 The implementation for the alternative low-biased algorithm

% Alternative Low-biased Estimates

clear all; close all

format long
% load Betas got from regression.
load('Beta_2.mat')
randn('state', rstate)
tic;

M = 1e+4;
h = T/N;

% Discount value for each time step:
Disc = exp(-r*h);

% load betas from regression done with LSM
beta = Beta_save{1};
beta1 = Beta_save{2};

sum1 = zeros(2,1);
sum2 = zeros(2,1);
for m = 1:1

S = ones(M, N+1);
S(:,1) = S0;

% Simulate Markov chain paths
for n = 1:N
 dW = sqrt(h)*randn(M,1);
 S(:,n+1) = S(:,n).*(1+r*h+sig*dW);
end

CE = max(K-S(:,end),0);

% Set initial value to the discounted payoff at terminal.
VLow1 = Disc^N*CE;
VLow2 = Disc^N*CE;

% Set flags initially to be 0.
index1 = true(M,1);
index2 = index1;

for n = 1:N-1

 X = S(:,n+1);
e = mean(X);
 CE = Disc^n*max(K-X,0);

 % Calculating continuation values
 CC1 = [ones(size(X,1),1) (X-e)/e ((X-e)/e).^2 ((X-e)/e).^3]...*
 beta(:,n);
 CC2 = [ones(size(X,1),1) (X-e)/e ((X-e)/e).^2 ((X-e)/e).^3 ...((X-e)/e).^4 ((X-e)/e).^5]*beta1(:,n);

end
% Check if the 'yet-to-be' exercised paths have
% its immediate exercise value greater than continuation values.
% Flags are updated.
index1 = ((CE.*index1) >= (CC1.*index1));
index2 = ((CE.*index2) >= (CC2.*index2));

% Update the values.
VLow1(index1) = CE(index1);
VLow2(index2) = CE(index2);

end

sum1(1) = sum1(1) + sum(VLow1);
sum1(2) = sum1(2) + sum(VLow2);
sum2(1) = sum((VLow1).^2) + sum2(1);
sum2(2) = sum((VLow2).^2) + sum2(2);

end

avrg = sum1/(m*M)
sd = sqrt((sum2/(m*M)-avrg.^2)/(m*M))
toc

A.3 The implementation of high-biased algorithm

% High-biased American Put Valuation

clear all; close all

format long
% load Betas got from regression.
load('Beta_2.mat')
randn('state',rstate)
tic;

M = 1000;
Mini_Path = 10;

h = T/N;

% Discount value for each time step:
Disc = exp(-r*h);

sum1 = zeros(2,1);
sum2 = zeros(2,1);

beta = Beta_save{1};

for m = 1:1
 %
 % Simulate M independent paths first
 %
 S = ones(M, N+1);
 S(:,1) = S0*ones(M,1);

 for n = 1:N
 dW = sqrt(h)*randn(M,1);
 S(:,n+1) = S(:,n).*(1+r*h+sig*dW);
 end

 CC_nested = zeros(M, Mini_Path);
 CC_nested_Anti = CC_nested;
 % Set zeros to the estimates and the martingale for both
VHigh = zeros(M,1);
VHigh_Anti = VHigh;
MAccum = zeros(M,1);
MAccum_Anti = MAccum;

for n = 1:N-1
 A = S(:,n+1);
 A_pre = S(:,n);
 e = mean(A);
 CE = Disc^n*max(K-A,0);
 % First term on the right hand side
 V_est = max(CE, [ones(M,1) (A-e)/e ((A-e)/e).^2 ((A-e)/e).^3]...
 *beta(:,n));

 % Sub-paths required for estimating conditional expectation
 dW = sqrt(h)*randn(M,Mini_Path);
 % Successor values
 A_Con = (1+r*h+sig*dW).*repmat(A_pre,1,Mini_Path);
 A_Con_Anti = (1+r*h-sig*dW).*repmat(A_pre,1,Mini_Path);
 e_pre = mean(A_Con);
 e_pre_Anti = mean(A_Con_Anti);

 for k = 1:Mini_Path
 % Continuation values for the sub-paths
 CC_nested(:,k) = [ones(M,1), (A_Con(:,k)-e_pre(k))/e_pre(k),...
 ((A_Con(:,k)-e_pre(k))/e_pre(k)).^2,...
 ((A_Con(:,k)-e_pre(k))/e_pre(k)).^3]*beta(:,n);
 CC_nested_Anti(:,k) = [ones(M,1), (A_Con_Anti(:,k)-e_pre_Anti(k))/e_pre_Anti(k),...
 e_pre_Anti(k)/(e_pre_Anti(k))^3,...
 (A_Con_Anti(:,k)-e_pre_Anti(k))/...
\[e_{\text{pre_Anti}(k)} \cdot \frac{(A_{\text{Con_Anti}(\cdot, k)} - e_{\text{pre_Anti}(k)})}{e_{\text{pre_Anti}(k)}} \cdot 3] \cdot \beta(:, n); \]

end

\% Second term of the right hand side
V_{\text{nested}} = \max(Disc^n \cdot \max(K - A_{\text{Con}}, 0), CC_{\text{nested}});
V_{\text{nested_Anti}} = \max(Disc^n \cdot \max(K - A_{\text{Con_Anti}}, 0), CC_{\text{nested_Anti}});

\% Update the martingales
M_{\text{Accum}} = M_{\text{Accum}} + (V_{\text{est}} - \text{mean}(V_{\text{nested}}, 2));
M_{\text{Accum_Anti}} = M_{\text{Accum_Anti}} + (V_{\text{est}} - \text{mean}([V_{\text{nested}} \ V_{\text{nested_Anti}}], 2));

\% Update the estimates
V_{\text{High}} = \max(V_{\text{High}}, CE - M_{\text{Accum}});
V_{\text{High_Anti}} = \max(V_{\text{High_Anti}}, CE - M_{\text{Accum_Anti}});
end

\% Final time step
CE = Disc^N \cdot \max(K - S(:, end), 0);
A_{\text{pre}} = S(:, N);

dW = \sqrt{h} \cdot \text{randn}(M, \text{Mini_Path});
A_{\text{Con}} = (1 + r \cdot h + sig \cdot dW) \cdot \text{repmat}(A_{\text{pre}}, 1, \text{Mini_Path});
A_{\text{Con_Anti}} = (1 + r \cdot h - sig \cdot dW) \cdot \text{repmat}(A_{\text{pre}}, 1, \text{Mini_Path});

V_{\text{nested}} = Disc^N \cdot \max(K - A_{\text{Con}}, 0);
M_{\text{Accum}} = M_{\text{Accum}} + (CE - \text{mean}(V_{\text{nested}}, 2));
V_{\text{High}} = \max(V_{\text{High}}, (CE - M_{\text{Accum}}));

V_{\text{nested_Anti}} = Disc^N \cdot \max(K - A_{\text{Con_Anti}}, 0);
M_{\text{Accum_Anti}} = M_{\text{Accum_Anti}} + (CE - \text{mean}([V_{\text{nested}} \ V_{\text{nested_Anti}}], 2));
V_{\text{High_Anti}} = \max(V_{\text{High_Anti}}, (CE - M_{\text{Accum_Anti}}));
```matlab
sum1(1) = sum1(1) + sum(VHigh);
sum1(2) = sum1(2) + sum(VHigh_Anti);
sum2(1) = sum(VHigh.^2) + sum2(1);
sum2(2) = sum(VHigh_Anti.^2) + sum2(2);
end

avrg = sum1/(m*M)
sd = sqrt((sum2/(m*M)-avrg.^2)/(m*M))

toc
```
References

