Chapman, S. J. and VandenBroeck, J. (2006) Exponential asymptotics and gravity waves. Journal of Fluid Mechanics, 567 . pp. 299326. ISSN 00221120

PDF
242kB 
Abstract
The problem of irrotational inviscid incompressible freesurface flow is examined in the limit of small Froude number. Since this is a singular perturbation, singularities in the flow field (or its analytic continuation) such as stagnation points, or corners in submerged objects or on rough beds, lead to a divergent asymptotic expansion, with associated Stokes lines. Recent techniques in exponential asymptotics are employed to observe the switching on of exponentially small gravity waves across these Stokes lines.
As a concrete example, the flow over a step is considered. It is found that there are three possible parameter regimes, depending on whether the dimensionless step height is small, of the same order, or large compared to the square of the Froude number. Asymptotic results are derived in each case, and compared with numerical simulations of the full nonlinear problem. The agreement is remarkably good, even at relatively large Froude number. This is in contrast to the alternative analytical theory of small step height, which is accurate only for very small steps.
Item Type:  Article 

Subjects:  D  G > Fluid mechanics 
Research Groups:  Oxford Centre for Industrial and Applied Mathematics 
ID Code:  609 
Deposited By:  Jon Chapman 
Deposited On:  24 May 2007 
Last Modified:  29 May 2015 18:25 
Repository Staff Only: item control page