A ‘twistor transform’ for complex manifolds with connection
by Dominic Joyce.

In this note we will briefly describe the geometry of a class of complex manifolds, to be
called complex-flat manifolds, that have a connection \(\nabla \) satisfying a curvature condition
given in §1, which is the curvature condition satisfied by the Levi-Civita connection of a
Kähler manifold. The structure has a sort of twistor transform: in §2, \(\nabla \) will be used to
define an almost complex structure \(J \) on the tangent bundle of \(X \), and it will be shown
that \(J \) is integrable exactly when the curvature condition holds.

It therefore gives a miniature picture of the Penrose transform for conformal 4-
manifolds, where the Cartan conformal connection is used to define a complex structure
on a bundle, and the integrability condition is a condition on the conformal curvature. In
§3 we give some examples of complex-flat manifolds.

1. Connections, curvature and complex structures

We begin by recalling how to decompose tensors relative to a complex structure \(I \).
Let \(X \) be a complex manifold, with complex structure \(I \), which will be written with indices
as \(I^a \) with respect to some real coordinate system \((x^1, \ldots, x^{2n}) \). Let \(K = K^a_{\cdot\cdot\cdot} \) be a tensor
on \(X \), taking values in \(\mathbb{C} \). Here \(a \) is a contravariant index of \(K \), and any other indices of
\(K \) are represented by dots. The Greek characters \(\alpha, \beta, \gamma, \delta, \epsilon \), and the starred characters
\(\alpha^*, \beta^*, \gamma^*, \delta^*, \epsilon^* \), will be used in place of the Roman indices \(a, b, c, d, e \) respectively. They
are tensor indices with respect to \((x^1, \ldots, x^{2n}) \) in the normal sense, and their use is actually
a shorthand indicating a modification to the tensor itself.

Define \(K^{a\cdot\cdot\cdot} = (K^{a\cdot\cdot\cdot} + i I^a_j K^{j\cdot\cdot\cdot})/2 \) and \(K^{\cdot\cdot\cdot a*} = (K^{\cdot\cdot\cdot a*} - i I^a_j K^{j\cdot\cdot\cdot})/2 \). In the same way,
if \(b \) is a covariant index on a complex-valued tensor \(L_{\cdot\cdot\cdot b} \), define \(L_{\cdot\cdot\cdot b} = (L_{\cdot\cdot\cdot b} - i I^b_j L^{j\cdot\cdot\cdot})/2 \)
and \(L_{\cdot\cdot\cdot b*} = (L_{\cdot\cdot\cdot b*} + i I^b_j L^{j\cdot\cdot\cdot})/2 \). Then \(K^{a\cdot\cdot\cdot} \) and \(L_{\cdot\cdot\cdot b} \) are the components of \(K \) and \(L \)
that are complex linear w.r.t. \(I \), and the starred versions are the components that are complex
antilinear w.r.t. \(I \). These operations are projections, and satisfy \(K^{a\cdot\cdot\cdot} = K^{\cdot\cdot\cdot a*} \) and
\(L_{\cdot\cdot\cdot b} = L_{\cdot\cdot\cdot b*} + L_{\cdot\cdot\cdot b*} \). The complex decomposition of a real-valued tensor is self-adjoint.
This means that changing round starred and unstarr\(h \)d indices has the same effect as complex conjugation. All the tensors we deal with will be self-adjoint.

Let \(\nabla \) be a torsion-free connection on \(X \) satisfying \(\nabla I = 0 \). The connection will be
written in the usual way as \(\Gamma^a_{\cdot\cdot\cdot} \), relative to the coordinate system \((x^1, \ldots, x^{2n}) \). In this
fixed coordinate system, \(\Gamma \) may be decomposed into components relative to \(I \) as above, but
as \(\Gamma \) is not a tensor this decomposition does depend on the coordinate system. Therefore,
we shall consider only coordinate systems \((x^1, \ldots, x^{2n}) \) with the property that \(I \) is constant
in coordinates, i.e. \(\partial I^a_j/\partial x^c = 0 \) for all \(a, b, c \).

As \(\nabla I = 0 \) we have \(\Gamma^a_{bc} = \Gamma^a_{\cdot\cdot\cdot} + \Gamma^a_{\cdot\cdot\cdot} + \Gamma^a_{\cdot\cdot\cdot} \), and as \(\nabla \) is torsion-free \(\Gamma^a_{bc} = \Gamma^a_{cb} \). Together
these imply that \(\Gamma^a_{bc} = \Gamma^a_{\cdot\cdot\cdot} + \Gamma^a_{\cdot\cdot\cdot} \). Now the curvature \(R^a_{bcd} \) of \(\nabla \) is given by
\(R^a_{bcd} = \partial \Gamma^a_{bd}/\partial x^c - \partial \Gamma^a_{bc}/\partial x^d + \Gamma^a_{jcd} \Gamma^j_{bd} - \Gamma^a_{jcd} \Gamma^j_{bd} \). Substituting in for \(\Gamma \) gives
\(R^a_{bcd} = R^a_{\cdot\cdot\cdot} + R^a_{\cdot\cdot\cdot} \). Because \(\nabla \) is torsion-free, \(R \) satisfies the Bianchi identity
\(R^a_{bcd} + R^a_{cde} + R^a_{dyz} = 0 \), and thus \(R^a_{\cdot\cdot\cdot} + R^a_{\cdot\cdot\cdot} \). But from above the last two terms are zero,
and so \(R^a_{\cdot\cdot\cdot} = 0 \). Therefore
defines an almost complex structure \(J \). Then let \((x, y) \) be a vector in \(J \). Let \(v \) be a vector in \(J \). Then \(Jv = (v_1, v_2) \) for all vectors \(v \), and for all \(x \in X, y \in T_x X \). This defines an almost complex structure \(J \) on the total space of \(TX \), commuting with \(I \) and projecting down to \(I \) on \(X \).

We will write \(J \) out explicitly in terms of the connection components \(\Gamma \), and calculate the Nijenhuis tensor \(N_J \) of \(J \), which will give the condition for \(J \) to be integrable. Let \((x^1, \ldots, x^{2n})\) be a coordinate system as in §1, for some open set \(U \subset X \). Let \((y^1, \ldots, y^{2n})\) be coordinates w.r.t. the basis \((\partial/\partial x^1, \ldots, \partial/\partial x^{2n})\) for the fibres of \(TU \). Then \((x^1, \ldots, x^{2n}, y^1, \ldots, y^{2n})\) are coordinates for \(TU \). In these coordinates, \(J \) is

\[
J \left(p^a \frac{\partial}{\partial x^a} + q^a \frac{\partial}{\partial y^a} \right) = I_b^a p^b \frac{\partial}{\partial x^a} - I_b^a q^b \frac{\partial}{\partial y^a} - 2I_d^c \Gamma_{bc}^a y^b \frac{\partial}{\partial y^d}.
\]

Decomposing this expression w.r.t. \(I \) leads to some simplifications, as we may use the facts that \(\Gamma_{bc}^a = \Gamma^a_{\beta\gamma} + \Gamma^*_{\beta\gamma} \) and \(I_b^a = i\delta_{\beta}^a - i\delta_{\beta}^* \). So we have

\[
J \left(p^a \frac{\partial}{\partial x^a} + q^a \frac{\partial}{\partial y^a} \right) = i p^a \frac{\partial}{\partial x^a} - i q^a \frac{\partial}{\partial y^a} + i q^* \frac{\partial}{\partial y^a} - 2i \Gamma_{\beta\gamma}^a y^\beta \frac{\partial}{\partial y^\gamma} + 2i \Gamma_{\beta\gamma}^* y^\beta \frac{\partial}{\partial y^\gamma}.
\]

Theorem. The almost complex structure \(J \) is integrable if and only if \(R^\alpha_{\beta\gamma\delta} = 0 \).
Proof. By the Newlander-Nirenberg theorem, a necessary and sufficient condition for the integrability of J is the vanishing of the Nijenhuis tensor N_J of J, which is given by $N_J(v, w) = [v, w] + J([J, v, w] + [v, J, w]) - [J, v, J, w]$. We shall evaluate N_J with $v = p^a \partial / \partial x^a + q^a \partial / \partial y^a$ and $w = r^a \partial / \partial x^a + s^a \partial / \partial y^a$, where p^a, q^a, r^a and s^a are constants independent of x^a, y^a. It is easy to see that $[v, w] = 0$. Using the fact that J acts as $-I$ on V, one calculates that

$$J([J, v, w]) = 2r^a \frac{\partial \Gamma_{\gamma}^a}{\partial x^d} y^\beta p^\gamma \frac{\partial}{\partial y^\alpha} + 2r^a \frac{\partial \Gamma_{\gamma}^a}{\partial x^d} y^\beta p^\gamma \frac{\partial}{\partial y^\alpha} + 2\Gamma_{bc}^a b^c \frac{\partial}{\partial y^\alpha},$$

$$J([v, J, w]) = -2p^a \frac{\partial \Gamma_{\gamma}^a}{\partial x^d} y^\beta r^\gamma \frac{\partial}{\partial y^\alpha} - 2p^a \frac{\partial \Gamma_{\gamma}^a}{\partial x^d} y^\beta r^\gamma \frac{\partial}{\partial y^\alpha} - 2\Gamma_{bc}^a q^b r^c \frac{\partial}{\partial y^\alpha},$$

and

$$[J, v, J, w] =$$

$$\left(i p^\delta \frac{\partial}{\partial x^\delta} - i p^\delta \frac{\partial}{\partial x^\delta} \right) \left(-2i \Gamma_{\delta}^\alpha y^\beta r^\gamma \frac{\partial}{\partial y^\alpha} + 2i \Gamma_{\delta}^\alpha y^\beta r^\gamma \frac{\partial}{\partial y^\alpha} \right)$$

$$- \left(i r^\delta \frac{\partial}{\partial x^\delta} - i r^\delta \frac{\partial}{\partial x^\delta} \right) \left(-2i \Gamma_{\delta}^\alpha y^\beta p^\gamma \frac{\partial}{\partial y^\alpha} + 2i \Gamma_{\delta}^\alpha y^\beta p^\gamma \frac{\partial}{\partial y^\alpha} \right)$$

$$- 4\Gamma_{\beta}^\gamma y^\beta p^\gamma \Gamma_{\delta}^\epsilon r^\epsilon \frac{\partial}{\partial y^\alpha} - 4\Gamma_{\beta}^\gamma y^\beta p^\gamma \Gamma_{\delta}^\epsilon r^\epsilon \frac{\partial}{\partial y^\alpha}$$

$$+ 4\Gamma_{\beta}^\gamma y^\beta r^\gamma \Gamma_{\delta}^\epsilon p^\epsilon \frac{\partial}{\partial y^\alpha} + 4\Gamma_{\beta}^\gamma y^\beta r^\gamma \Gamma_{\delta}^\epsilon p^\epsilon \frac{\partial}{\partial y^\alpha}$$

$$- 2\Gamma_{\beta}^\gamma q^\beta r^\gamma \frac{\partial}{\partial y^\alpha} - 2\Gamma_{\beta}^\gamma q^\beta r^\gamma \frac{\partial}{\partial y^\alpha} + 2\Gamma_{\beta}^\gamma s^\beta p^\gamma \frac{\partial}{\partial y^\alpha} + 2\Gamma_{\beta}^\gamma s^\beta p^\gamma \frac{\partial}{\partial y^\alpha}.$$

Combining the above gives

$$N_J(v, w) = 4R_{\beta}^\alpha y^\beta r^\gamma p^\delta \frac{\partial}{\partial y^\alpha} + 4R_{\beta}^\alpha y^\beta r^\gamma p^\delta \frac{\partial}{\partial y^\alpha},$$

using the expression for R in §1. As this holds for all v, w and y^a for each fixed x, $N_J = 0$ identically if and only if $R_{\beta}^\alpha y^\beta = 0$.

\[\square\]

3. Examples

The simplest examples of complex-flat manifolds are Kähler manifolds, taking ∇ to be the Levi-Civita connection of the Kähler metric. However, there are many other examples of complex-flat manifolds with no compatible Kähler metric. We shall comment briefly on three such families. Firstly, using the work of [J] for hypercomplex manifolds it is possible to define a quotient construction for complex-flat manifolds analogous to the Kähler quotient. Starting with a flat complex-flat structure one may produce non-Kähler complex-flat structures by choosing a moment map not compatible with any Kähler metric.

Another way of constructing examples is to consider complex submanifolds of complex-flat manifolds. To induce a connection on the tangent bundle of a submanifold M of X we need a splitting $TX|_M = TM \oplus V$ for some vector bundle V; for the induced connection to be complex-flat, it turns out that V must be a holomorphic subbundle w.r.t. J. In the
case, say, of projective varieties in $X = \mathbb{CP}^n$, there may be many different choices of V satisfying this condition, and each will give a distinct complex-flat connection on M.

Our final family of examples are hypercomplex manifolds. A hypercomplex manifold is a manifold M^{4n} with complex structures I_1, I_2 and I_3 satisfying $I_1 I_2 = I_3$. By [S], §6, there is a unique connection ∇ on M called the Obata connection, that is torsion-free and satisfies $\nabla I_j = 0$. We shall show that ∇ is a complex-flat connection for each of the complex structures I_1, I_2, I_3. Thus hypercomplex manifolds are examples of complex-flat structures that in general do not come from Kähler structures.

Proposition. Let M and ∇ be as above. Then the curvature $R^a_{\ bcd}$ of ∇ satisfies $R^\alpha_{\ \beta\gamma\delta} = 0$ in the complex decomposition with respect to each complex structure I_j. Thus (M, I_j, ∇) is a complex-flat manifold.

Proof. We shall prove the result for I_1, for by symmetry it then holds for I_2, I_3. As ∇ is torsion-free and $\nabla I_2 = 0$, from §1 the curvature R satisfies $R^a_{\ bcd} = R^\alpha_{\ \beta cd} + R^\alpha_{\ \beta cd}$ in the complex decomposition w.r.t. I_2, and so $R^a_{\ bcd} = -(I_2)^a_j(2)_b^k R^j_{\ kcd}$. Also, from §1 the component $R^\alpha_{\ \beta\gamma\delta}$ is zero in the complex decomposition w.r.t. I_1. Therefore

$$0 = (1 - iI_1)\alpha_p (1 + iI_1)\beta_b (1 - iI_1)\gamma_c (1 - iI_1)\delta_d R^p_{\ qrs}$$

$$= (1 - iI_1)\alpha_p (1 + iI_1)\beta_b (1 - iI_1)\gamma_c (1 - iI_1)\delta_d (I_2)^p_j (I_2)^k_q R^j_{\ krs}$$

$$= (I_2)^a_j (I_2)^k_b (1 + iI_1)\beta_p (1 - iI_1)\gamma_q (1 - iI_1)\delta_r R^p_{\ qrs},$$

where $I_1 I_2 = -I_2 I_1$ is used in the last line. So

$$\frac{1}{16} (1 + iI_1)\alpha_p (1 - iI_1)\beta_b (1 - iI_1)\gamma_c (1 - iI_1)\delta_d R^p_{\ qrs} = R^\alpha_{\ \beta\gamma\delta} = 0$$

(3)

in the complex decomposition w.r.t. I_1, which is the condition for (I_1, ∇) to be a complex-flat structure on M. \square

Thus the results of §2 apply to hypercomplex manifolds, and lead to some new ideas about the Obata connection and complex structures on the tangent and cotangent bundles of a hypercomplex manifold.

References

