The Mathematical Institute, University of Oxford, Eprints Archive

Travelling wave phenomena in some degenerate reaction-diffusion equations

Sánchez-Garduño, F. and Maini, P. K. (1994) Travelling wave phenomena in some degenerate reaction-diffusion equations. Journal of Differential Equations, 114 (2). pp. 434-475.



In this paper we study the existence of travelling wave solutions (t.w.s.), $u(x, t)=\phi(x−ct)$ for the equation

$u_t=[D(u)u_x]_x+g(u)  (*)$

where the reactive part g(u) is as in the Fisher-KPP equation and different assumptions are made on the non-linear diffusion term D(u). Both functions D and g are defined on the interval [0, 1]. The existence problem is analysed in the following two cases.

Case 1. D(0)=0, D(u)>0 $\forall u \in (0, 1]$, D and $g\in C^{2}_{[0,1]}$, $D'(0)\neq0$ and $D''(0)\neq 0$. We prove that if there exists a value of c, c*, for which the equation (*) possesses a travelling wave solution of sharp type, it must be unique. By using some continuity arguments we show that: for 0<c<c*, there are no t.w.s., while for c>c*, the equation (*) has a continuum of t.w.s. of front type. The proof of uniqueness uses a monotonicity property of the solutions of a system of ordinary differential equations, which is also proved.

Case 2. $D(0)=D'(0)=0$, D and $g \in C^{2}_{[0,1]}$, $D''(0)\neq 0$. If, in addition, we impose $D''(0)>0$ with $D(u)>0$ $\forall u(0, 1]$, We give sufficient conditions on c for the existence of t.w.s. of front type. Meanwhile if $D''(0)<0$ with $D(u)<0$ $\forall u\in (0, 1]$ we analyse just one example ($D(u)=-u^2$, and $g(u)=u(1-u)$) which has oscillatory t.w.s. for $0<c\leq2$ and t.w.s. of front type for c>2. In both the above cases we use higher order terms in the Taylor series and the Centre Manifold Theorem in order to get the local behaviour around a non-hyperbolic point of codimension one in the phase plane.

Item Type:Article
Uncontrolled Keywords:n/a
Subjects:A - C > Biology and other natural sciences
Research Groups:Centre for Mathematical Biology
ID Code:497
Deposited By: Philip Maini
Deposited On:12 Dec 2006
Last Modified:29 May 2015 18:23

Repository Staff Only: item control page