Breward, C. J. W. (1999) The mathematics of foam. PhD thesis, University of Oxford.

PDF
1MB 
Abstract
The aim of this thesis is to derive and solve mathematical models for the flow of liquid in a foam. A primary concern is to investigate how socalled `Marangoni stresses' (i.e. surface tension gradients), generated for example by the presence of a surfactant, act to stabilise a foam. We aim to provide the key microscopic components for future foam modelling.
We begin by describing in detail the influence of surface tension gradients on a general liquid flow, and various physical mechanisms which can give rise to such gradients. We apply the models thus devised to an experimental configuration designed to investigate Marangoni effects.
Next we turn our attention to the flow in the thin liquid films (`lamellae') which make up a foam. Our methodology is to simplify the field equations (e.g. the NavierStokes equations for the liquid) and free surface conditions using systematic asymptotic methods. The models so derived explain the `stiffening' effect of surfactants at free surfaces, which extends considerably the lifetime of a foam.
Finally, we look at the macroscopic behaviour of foam using an adhoc averaging of the thin film models.
Item Type:  Thesis (PhD) 

Subjects:  O  Z > Partial differential equations D  G > Fluid mechanics H  N > Numerical analysis 
Research Groups:  Oxford Centre for Industrial and Applied Mathematics 
ID Code:  34 
Deposited By:  Eprints Administrator 
Deposited On:  10 Mar 2004 
Last Modified:  29 May 2015 18:15 
Repository Staff Only: item control page