The Mathematical Institute, University of Oxford, Eprints Archive

Exponential asymptotics and Stokes lines in a partial differential equation

Chapman, S. J. and Mortimer, D. B. (2005) Exponential asymptotics and Stokes lines in a partial differential equation. Proceedings of the Royal Society of London A, 461 (2060). pp. 2385-2421. ISSN 1364-5021

[img]
Preview
PDF
530Kb

Abstract

A singularly perturbed linear partial differential equation motivated by the geometrical model for crystal growth is considered. A steepest descent analysis of the Fourier transform solution identifies asymptotic contributions from saddle points, end points and poles, and the Stokes lines across which these may be switched on and off. These results are then derived directly from the equation by optimally truncating the naïve perturbation expansion and smoothing the Stokes discontinuities. The analysis reveals two new types of Stokes switching: a higher-order Stokes line which is a Stokes line in the approximation of the late terms of the asymptotic series, and which switches on or off Stokes lines themselves; and a second-generation Stokes line, in which a subdominant exponential switched on at a primary Stokes line is itself responsible for switching on another smaller exponential. The ‘new’ Stokes lines discussed by Berk et al. (Berk et al. 1982 J. Math. Phys.23, 988–1002) are second-generation Stokes lines, while the ‘vanishing’ Stokes lines discussed by Aoki et al. (Aoki et al. 1998 In Microlocal analysis and complex Fourier analysis (ed. K. F. T. Kawai), pp. 165–176) are switched off by a higher-order Stokes line.

Item Type:Article
Subjects:O - Z > Partial differential equations
Research Groups:Oxford Centre for Industrial and Applied Mathematics
ID Code:295
Deposited By:Jon Chapman
Deposited On:03 Oct 2006
Last Modified:20 Jul 2009 14:20

Repository Staff Only: item control page