Law, S. L. (2005) *Financial optimization problems.* PhD thesis, University of Oxford.

| PDF 635Kb |

## Abstract

The major objective of this thesis is to study optimization problems in finance. Most of the effort is directed towards studying the impact of transaction costs in those problems. In addition, we study dynamic meanvariance asset allocation problems. Stochastic HJB equations, Pontryagin Maximum Principle and perturbation analysis are the major mathematical techniques used.

In Chapter 1, we introduce the background literature. Following that, we use the Pontryagin Maximum Principle to tackle the problem of dynamic mean-variance asset allocation and rediscover the doubling strategy. In Chapter 2, we present one of the major results of this thesis. In this chapter, we study a financial optimization problem based on a market model without transaction costs first. Then we study the equivalent problem based on a market model with transaction costs. We find that there is a relationship between these two solutions. Using this relationship, we can obtain the solution of one when we have the solution of another.

In Chapter 3, we generalize the results of chapter 2.

In Chapter 4, we use Pontryagin Maximum Principle to study the problem limit of the no-transaction region when transaction costs tend to 0. We find that the limit is the no-transaction cost solution.

Item Type: | Thesis (PhD) |
---|---|

Subjects: | D - G > Game theory, mathematical finance, economics, social and behavioral sciences |

Research Groups: | Mathematical and Computational Finance Group |

ID Code: | 240 |

Deposited By: | Eprints Administrator |

Deposited On: | 23 Jun 2006 |

Last Modified: | 20 Jul 2009 14:19 |

Repository Staff Only: item control page