Monoyios, Michael (2004) Option pricing with transaction costs using a Markov chain approximation. Journal of Economic Dynamics and Control, 28 . pp. 889913.

PDF
347kB 
Abstract
An efficient algorithm is developed to price European options in the presence of proportional transaction costs, using the optimal portfolio framework of Davis (in: Dempster, M.A.H., Pliska, S.R. (Eds.), Mathematics of Derivative Securities. Cambridge University Press, Cambridge, UK). A fair option price is determined by requiring that an infinitesimal diversion of funds into the purchase or sale of options has a neutral effect on achievable utility. This results in a general option pricing formula, in which option prices are computed from the solution of the investor's basic portfolio selection problem, without the need to solve a more complex optimisation problem involving the insertion of the option payoff into the terminal value function. Option prices are computed numerically using a Markov chain approximation to the continuous time singular stochastic optimal control problem, for the case of exponential utility. Comparisons with approximately replicating strategies are made. The method results in a uniquely specified option price for every initial holding of stock, and the price lies within bounds which are tight even as transaction costs become large. A general definition of an option hedging strategy for a utility maximising investor is developed. This involves calculating the perturbation to the optimal portfolio strategy when an option trade is executed.
Item Type:  Article 

Subjects:  O  Z > Partial differential equations O  Z > Probability theory and stochastic processes A  C > Calculus of variations and optimal control 
Research Groups:  Mathematical and Computational Finance Group 
ID Code:  232 
Deposited By:  Professor Michael Monoyios 
Deposited On:  24 May 2006 
Last Modified:  29 May 2015 18:18 
Repository Staff Only: item control page