Howell, P. D. and Siegel, M. (2004) *The evolution of a slender non-axisymmetric drop in an extensional flow.* Journal of Fluid Mechanics, 521 . pp. 155-180.

*This is the latest version of this item.*

| PDF 838Kb |

## Abstract

An asymptotic method for analysing slender non-axisymmetric drops, bubbles and jets in a general straining flow is developed. The method relies on the slenderness of the geometry to reduce the three-dimensional equations to a sequence of weakly coupled, quasi-two-dimensional Stokes flow problems for the cross-sectional evolution. Exact solution techniques for the flow outside a bubble in two-dimensional Stokes flow are generalised to solve for the transverse flow field, allowing large non-axisymmetric deformations to be described. A generalisation to the case where the interior contains a slightly viscous fluid is also presented.

Our method is used to compute steady non-axisymmetric solution branches for inviscid bubbles and slightly viscous drops. We also present unsteady numerical solutions showing how the eccentricity of the cross-section adjusts to a non-axisymmetric external flow. Finally, we use our theory to investigate how the pinch-off of a jet of relatively inviscid fluid is affected by a two-dimensional straining cross-flow.

Item Type: | Article |
---|---|

Subjects: | D - G > Fluid mechanics |

Research Groups: | Oxford Centre for Industrial and Applied Mathematics |

ID Code: | 209 |

Deposited By: | Peter Howell |

Deposited On: | 06 Oct 2005 |

Last Modified: | 20 Jul 2009 14:19 |

### Available Versions of this Item

- The evolution of a slender non-axisymmetric drop in an extensional flow. (deposited 09 Aug 2004)
- The evolution of a slender non-axisymmetric drop in an extensional flow. (deposited 06 Oct 2005)
**[Currently Displayed]**

- The evolution of a slender non-axisymmetric drop in an extensional flow. (deposited 06 Oct 2005)

Repository Staff Only: item control page