The Mathematical Institute, University of Oxford, Eprints Archive

Toward a quantitative understanding of the Wnt/beta-catenin pathway through simulation and experiment

Lloyd-Lewis, B and Fletcher, A G and Dale, T C and Byrne, H M (2013) Toward a quantitative understanding of the Wnt/beta-catenin pathway through simulation and experiment. Wires Systems Biology and Medicine, 5 (4). pp. 391-407.

[img]
Preview
PDF
939kB

Abstract

Wnt signaling regulates cell survival, proliferation, and differentiation throughout development and is aberrantly regulated in cancer. The pathway is activated when Wnt ligands bind to specific receptors on the cell surface, resulting in the stabilization and nuclear accumulation of the transcriptional co‐activator β‐catenin. Mathematical and computational models have been used to study the spatial and temporal regulation of the Wnt/β‐catenin pathway and to investigate the functional impact of mutations in key components. Such models range in complexity, from time‐dependent, ordinary differential equations that describe the biochemical interactions between key pathway components within a single cell, to complex, multiscale models that incorporate the role of the Wnt/β‐catenin pathway target genes in tissue homeostasis and carcinogenesis. This review aims to summarize recent progress in mathematical modeling of the Wnt pathway and to highlight new biological results that could form the basis for future theoretical investigations designed to increase the utility of theoretical models of Wnt signaling in the biomedical arena.

Item Type:Article
Subjects:A - C > Biology and other natural sciences
Research Groups:Centre for Mathematical Biology
ID Code:1776
Deposited By: Sara Jolliffe
Deposited On:12 Feb 2014 08:50
Last Modified:29 May 2015 19:28

Repository Staff Only: item control page