Population of human ventricular cell models calibrated with in vivo measurements unravels ionic mechanisms of cardiac alternans

by

Xin Zhou
Alfonso Bueno-Orovio
Michele Orini
Ben Hanson
Martin Haywood
Peter Taggart
Pier Lambiase
Kevin Burrage
Blanca Rodriguez
Population of Human Ventricular Cell Models Calibrated with in vivo Measurements Unravels Ionic Mechanisms of Cardiac Alternans

Xin Zhou1, Alfonso Bueno-Orovio2, Michele Orini3, Ben Hanson3, 4, Martin Haywood4, Peter Taggart3, 4, Pier Lambiase3, 4, Kevin Burrage1, 5, Blanca Rodriguez1

1Department of Computer Science, University of Oxford, Oxford, UK
2Oxford Centre for Collaborative Applied Mathematics, University of Oxford, Oxford, UK
3University College London, London, UK
4The Heart Hospital, London, UK
5Queensland University of Technology, Queensland, Australia

Abstract

Cardiac alternans is an important risk factor in cardiac physiology, and is related to the initiation of many pathophysiological conditions. However, the mechanisms underlying the generation of alternans remain unclear. In this study, we used a population of computational human ventricle models based on the O’Hara model[1] to explore the effect of 11 key factors experimentally reported to be related to alternans. In vivo experimental datasets coming from patients undergoing cardiac surgery were used in the calibration of our in silico population of models. The calibrated models in the population were divided into two groups (Normal and Alternans) depending on alternans occurrence. Our results showed that there were significant differences in the following 5 ionic currents between the two groups: fast sodium current, sodium calcium exchanger current, sodium potassium pump current, sarcoplasmic reticulum (SR) calcium release flux and SR calcium reuptake flux. Further analysis indicated that fast sodium current and SR calcium uptake were the two most significant currents that contributed to voltage and calcium alternans generation, respectively.

1. Introduction

Cardiac alternans is a repetitive beat-to-beat fluctuation between subsequent action potentials (APs), and is regarded as an important risk factor for ventricular arrhythmia and fibrillation. It can be observed in many pathophysiological conditions under significant metabolic stress and chronotropic stimulations[2]. Two major hypotheses have been developed to explain the generation of alternans in cardiac myocytes: the voltage-driven and calcium-driven hypothesis.

According to the first hypothesis, the alternation in sarcolemmal currents, membrane voltage, and AP morphology can lead to beat-to-beat fluctuations in intracellular calcium concentration[3]. Modulation of sarcolemmal K+ and Ca2+ currents based on changes of AP morphology has been reported to have a significant effect on the stability of Ca2+ cycling and the transition to stable alternans[4]. Some other transmembrane proteins, such as the Na+/Ca2+ exchanger and the Na+/K+ pump, may also play a role in the generation and maintenance of these alternans.

The second hypothesis suggests alternation of intracellular Ca2+ concentration as the primary event, leading to changes in AP morphology and sarcolemmal currents[3]. Calcium storage in the intracellular subspace plays a crucial role in the maintenance of myocyte physiological activity. The sarcoplasmic reticulum (SR) is a subspace in muscle cells that is responsible for the release and storage of Ca2+ ions. The amount of Ca2+ release from the SR to initiate contraction must match the amount of Ca2+ reclaimed from cytoplasm. Under this hypothesis, cardiac alternans occur when heart rate exceeds the capability of cardiac myocytes to recycle calcium. In this process, SR Ca2+ release by ryanodine receptors (RyRs) and re-uptake by sarcoplasmic reticulum Ca2+-ATPase (SERCA) are the two major processes that affect the dynamic changes of intracellular Ca2+ concentration[3]. Recent experimental data tends to support the idea that the perturbation in the intracellular Ca2+ cycling may be the fundamental event in the generation of alternans[3].

2. Methods

In order to simulate the variability and uncertainty of biological problems, one parameter set in a single model is insufficient. Instead, we base our analysis on a population of models of human ventricular electrophysiology based on the O’Hara model[1] within this population, cell models share the same equations representing ionic
current kinetics but different conductance values[5, 6].

2.1. Variation of key parameters

A population of models was constructed based on the sampling of the following 11 key parameters related to alternans: GNa (fast Na channel conductance), PCa (Ca channel permeability), GKs (Ks channel conductance), GKr (Kr channel conductance), Gs (K1 channel conductance), GNaCa (Na⁺/Ca²⁺ exchanger conductance), GNaK (Na⁺/K⁺ pump), Jrel (Ca²⁺ release via ryanodine receptors to myoplasm) and Jup (Ca²⁺ uptake via SERCA from the myoplasm).

2.2. Latin hypercube sampling

Due to the complexity of cardiac cell models and the large number of parameters, considering every possible combination of parameter values is computationally intractable. Latin hypercube sampling (LHS) methods [7] allow us to generate parameter sets over large number of parameters efficiently and without bias [6].

To generate a sample size N from K parameters, the range of each parameter is divided into N non-overlapping intervals. From each interval one value is selected randomly according to the probability density of the interval. The N values of the first parameter are paired in a random way with the N values of the second parameter, and these N pairs are then paired randomly with values of the third parameter and so on until N groups of K parameters are formed.

LHS was used in this study to generate scaling factors uniformly distributed between 0 and 2. Base model parameters in [1] were then multiplied by these scaling factors to generate a population of 10000 ionic models.

2.3. Data acquisition and signal analysis

In vivo information from 23 patients (7 female, 16 male) undergoing AVR (Aortic Valve Replacement) or CABG (Coronary Artery Bypass Grafting) was used in this study. Multielectrode activation and repolarization maps on the whole heart epicardial surface at multiple cycle lengths (CLs) were used to calculate activation-recovery intervals (ARIs) [8]. ARIs have been validated theoretically and experimentally as a measure of APD₉₀ (AP duration to 90% repolarization); therefore, we used ARIs to constrain APD₉₀[9]. For each CL, the minimum ARI was evaluated to be 183 ms, and the maximum values for different CLs are given in Table 1. Any parameter sets that generated a model with unphysiological APD₉₀ were excluded from the population.

<table>
<thead>
<tr>
<th>CL (ms)</th>
<th>600</th>
<th>550</th>
<th>500</th>
<th>450</th>
<th>400</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARI max (ms)</td>
<td>350</td>
<td>345</td>
<td>340</td>
<td>335</td>
<td>330</td>
<td>320</td>
</tr>
</tbody>
</table>

2.4. Electrophysiological simulations

All numerical simulations were performed using our open source simulation software Chaste [10] on a 512 core cluster Intel processors at the Oxford Supercomputing Centre (OSC). Cell models were stimulated for 1000 paces at each of the following CLs in a step protocol: 600, 500, 450, 400, 350 and 300 ms.

3. Results

3.1. Calibration of models

10000 models were generated by varying 11 different parameters using Latin hypercube sampling as described in Methods. 3548 models were accepted after the calibration (Figure 1).

Figure 1. Population of models of human ventricular electrophysiology, paced at a CL = 600 ms. Black: original model; blue: rejected models; red: accepted models.

3.2. Analysis of cardiac alternans

The occurrence of voltage and Ca²⁺ alternans was defined as a difference of greater than 5 ms between the APD₉₀ (AP duration to 80% repolarization) or CaTD₉₀ (Ca²⁺ transients duration to 80% of repolarization) in the penultimate and final APs. Linear regression analysis indicates, at all CLs under study, a significant correlation between both types of alternans (Figure 2, linear fit). This is with the exception of models exhibiting large magnitudes of voltage alternans in the absence of Ca²⁺ fluctuations (Figure 2, points in green circle). These results therefore suggest that some of the observed voltage alternans were contributed by Ca²⁺ alternans, while others were contributed by a different mechanism.
Parameter sets were divided into two groups (Normal and Alternans) depending on alternans occurrence. Both Normal (non-alternating) and Alternans group parameters were distributed across the whole sampling range (Fig. 3).

Statistical analysis (Student’s t-test) was used to compare the differences between the two groups of parameters. For GNa, GNaCa, GNaK, Jrel and Jup, the differences were statistical significant (Figure 3). GNa and Jup were much smaller in the Alternans group, while GNaCa, GNaK and Jrel were relatively larger in the Alternans group. Among the above five parameters, GNa and Jup exhibited the greatest differences, which suggested the importance of the fast sodium current and the Ca$^{2+}$ uptake flux in alternans generation (Figure 3 a,e).

After a comparison of the contributions of GNa and Jup, we concluded that smaller GNa mainly contributed to the larger amplitudes of voltage alternans while it had little effect on the amplitude of calcium alternans (Figure 4a). Small values of Jup had greater effect on the amplitude of calcium alternans compared to voltage alternans (Figure 4b). These results suggested that GNa and Jup may affect the generation of alternans, but through different mechanisms.

4. Discussion and Conclusions

In this study we built a population of models of human ventricular electrophysiology based on the O’Hara model, and calibrated the population of models using in vivo epicardial ARI values. Within the accepted models in the population, we detected the generation of voltage and calcium alternans and compared all the parameters sets depending on their contributions to alternans occurrence. Significant differences between GNa, GNaCa, GNaK, Jrel and Jup were observed.
Among the five, GNa and Jup exhibited the greatest differences. Smaller GNa mainly contributed to large voltage alternans at fast pacing rates. As GNa plays an important role in the depolarization period (phase 0) of the AP, modulation of GNa may lead to alternans caused by the depolarization period rather than repolarization. Importantly, this type of alternans caused by depolarization effects was also observed in our patients (Figure 5).

Figure 5 Electrograms of a patient showing no alternans (a), repolarization alternans (b) and depolarization alternans (c)

The other parameters, however, affected alternans generation in a different way. Insufficient Jup flux or excess Jrel flux in cardiac myocytes may cause an increase of the cytosolic Ca\(^{2+}\) concentration and so, disturb the balance between SR Ca\(^{2+}\) release and SR Ca\(^{2+}\) re-uptake and hence lead to Ca\(^{2+}\) alternans. It has also been found experimentally that over-expression of SERCA2a can improve the resistance to APD alternans [11]. GNaCa and GNaK may also be involved in this process by affecting the intracellular Ca\(^{2+}\) cycle.

The results in this study were based on the initial analysis of in vivo data from a relatively small number of individuals. Currently, we only used the overall ARI ranges from all patients to calibrate the population of models. Future work may extend this approach by developing further subpopulations based on gender, age and the condition of patients. One limitation of this study is that only APD\(_{90}\) information was used to calibrate the population of models; additional physiological information may be incorporated into the calibration method to make the results closer to physiological reality. A more thorough statistical analysis should also be applied to the analysis of alternans in future studies.

Acknowledgements

X.Z. was supported by China Scholarship Council and EPSRC-funded Systems Biology Doctoral Training Centre program. A.B.O. was supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). P.L. was supported by MRC grant number G901089. B.R. holds Medical Research Council Career Development, Industrial Partnership and Centenary Awards. The authors would like to acknowledge John Walmsley, Oliver J. Britton and the Oxford Supercomputing Centre (OSC) for their help in this work.

References

Address for correspondence.

Xin Zhou. Department of Computer Science, University of Oxford Wolfson Building, Parks Road, Oxford OX1 3QD, UK.
<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/07</td>
<td>Porous squeeze-film flow</td>
<td>Knox, Wilson, Duffy, McKee</td>
</tr>
<tr>
<td>13/08</td>
<td>Diffusion of finite-size particles in confined geometries</td>
<td>Bruna, Chapman</td>
</tr>
<tr>
<td>13/09</td>
<td>Mathematical analysis of a model for the growth of the bovine corpus luteum</td>
<td>Prokopiou, Byrne, Jeffrey, Robinson, Mann, Owen</td>
</tr>
<tr>
<td>13/10</td>
<td>Capillary deformations of bendable films</td>
<td>Schroll, Adda-Bedia, Cerda, Huang, Menon, Russell, Toga, Vella, Davideovitch</td>
</tr>
<tr>
<td>13/11</td>
<td>Twist and stretch of helices: All you need is Love</td>
<td>Đuričković, Goriely, Maddocks</td>
</tr>
<tr>
<td>13/12</td>
<td>Switch on, switch off: stiction in nanoelectromechanical switches</td>
<td>Wagner, Vella</td>
</tr>
<tr>
<td>13/13</td>
<td>Pinning, de-pinning and re-pinning of a slowly varying rivulet</td>
<td>Paterson, Wilson, Duffy</td>
</tr>
<tr>
<td>13/14</td>
<td>Travelling-wave similarity solutions for a steadily translating slender dry patch in a thin fluid film</td>
<td>Yatim, Duffy, Wilson</td>
</tr>
<tr>
<td>13/15</td>
<td>A stochastic model for early placental development</td>
<td>Cotter, Klika, Kimpton, Collins, Heazell</td>
</tr>
<tr>
<td>13/16</td>
<td>Experimentally-calibrated population of models predicts and explains inter-subject variability in cardiac cellular electrophysiology</td>
<td>Britton, Bueno-Orovio, Van Ammel, Lu, Towart, Gallacher, Rodriguez</td>
</tr>
<tr>
<td>13/17</td>
<td>Elastometry of deflated capsules elastic moduli from shape and wrinkle analysis</td>
<td>Knoche, Vella, Aumaitre, Degen</td>
</tr>
</tbody>
</table>
13/23 Na/K pump regulation of cardiac repolarization: Insights from a systems biology approach
Bueno-Orovio
Sánchez
Pueyo
Rodriguez

13/24 Cellular blebs - pressure-driven, axisymmetric, membrane protrusions
Woolley
Gaffney
Oliver
Baker
Waters
Goriely

13/25 Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix
O'Keeffe
Moulton
Waters
Goriely

13/26 The counterbend phenomenon: a generic property of the axoneme and cross-linked filament bundles
Gadêlha
Gaffney
Goriely

13/27 A well-posedness framework for inpainting based on coherence transport
März

13/28 Minimizing synchronizations in sparse iterative solvers for distributed supercomputers
Zhu
Gu
Liu

13/29 Computational probabilistic quantification of pro-arrhythmic risk from scar and left-to-right heterogeneity in the human ventricles
Wallman
Bueno-Orovio
Rodriguez

Copies of these, and any other OCCAM reports can be obtained from:
Oxford Centre for Collaborative Applied Mathematics
Mathematical Institute
24 - 29 St Giles'
oxford
OX1 3LB
England
www.maths.ox.ac.uk/occam