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Abstract

We describe iterative methods for polynomial zerofinding and, specifically, the
Laguerre method and how it is used in the NAG subroutine C02AFF. We also
investigate a bug that has been in this subroutine for ten years. In chapter two,
we give a brief survey of some zerofinding methods. These include Bairstow’s
method, Bernoulli’s method, Graeffe’s root-squaring method, Müller’s method,
the Newton-Raphson method and the Jenkins-Traub and Laguerre methods.
In chapter three, we look at the Laguerre method as used in C02AFF in fur-
ther detail, describe the behaviour of the bug and how the problem has been
solved. We also describe general tests for zerofinding algorithms and results of
comparisons between NAG’s C02AFF and other zerofinding programs. Chap-
ter 4 involves comparisons of C02AFF with other methods and a note on error
bounds. Finally, we make our proposals and conclusions in chapter 5.
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Chapter 1

Introduction

The problem of solving the polynomial equation

p(x) = p0 + p1x+ p2x
2 + . . .+ pnx

n = 0 (1.1)

was known to the Sumerians (third millennium BC) and has greatly influenced the develop-
ment of mathematics throughout the centuries. Starting with the Sumerian and Babylonian
times, the study of polynomial zerofinding focused on smaller degree equations for specific
coefficients [Pan97]. The solution of specific quadratic equations by the Babylonians (about
200 BC) and the Egyptians (found in the Rhind or Ahmes papyrus of the second millennium
BC) corresponds to the use of the quadratic formula:

x1,2 =
−p1 ±

√
p2

1 − 4p0p2

2p2
. (1.2)

A full understanding of this solution formula, however, required the introduction of negative,
irrational and complex numbers. Attempts to find solution formulae which would involve
only arithmetic operations and radicals succeeded in the sixteenth century for polynomials of
degree 3 and 4. However, for polynomials of degree greater than 4, it was not possible1 to find
such formulae as was proved by Abel in 1827. The Galois theory was motivated by the same
problem of solving (1.1) and included the proof of the nonexistence of the solution in the form
of formulae. In spite of the absence of solution formulas in radicals, the fundamental theorem
of algebra states that equation (1.1) always has a complex solution for any polynomial p(x)
of any positive degree n. With no hope left for the exact solution formulae, the motivation
came for designing iterative algorithms for the approximate solution and, consequently,
for introducing several major techniques. Actually the list of iterative algorithms proposed
for approximating the solution z1, z2, z3, . . . , zn of (1.1) includes hundreds of items and
encompasses about four millennia. An extensive survey of literature dealing with zerofinding
is found in [McN93] and contains hundreds of references.

The Numerical Algorithms Group (NAG) specialises in developing software for the solu-
tion of complex mathematical problems. Their polynomial rootfinding subroutine C02AFF,
which has had a bug for about 10 years now, is our main interest in this work. We shall
describe in this work how we successfully found the bug in this subroutine and results of
our comparisons with other widely used algorithms for polynomial rootfinding.

1In fact, Omar Khayyam, who died in 1122, a famous poet and the leading mathematician of his time,
and later Leonardo de Pisa (now commonly known as Fibonacci), who died in 1250, wrongly conjectured
the nonexistence of such solution formulae for n = 3 [Pan97].
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Chapter 2

Some Zerofinding Algorithms

In this chapter, we look at some of the outstanding algorithms that have been proposed and
used in the 20th century. First we define some concepts that are inherent to the subject of
polynomial zerofinding.

2.1 Important Concepts

A numerical method for determining a zero of a polynomial generally takes the form of
a prescription to construct one or several sequences zn of complex numbers supposed to
converge to a zero of the polynomial. As one would expect, each algorithm has its advantages
and disadvantages and therefore the choice of the ‘best’ algorithm for a given problem is
never easy.

Any reasonable algorithm must converge, i.e., the sequence generated by it should, under
suitable conditions, converge to a zero of the given polynomial. An algorithm must also be
designed to produce approximations to both real and complex roots of a polynomial. Other
desirable properties that an algorithm may or may not have include the following:

1. Global Convergence: Many algorithms can be guaranteed to converge only if the start-
ing value z0 is sufficiently close to a zero of the polynomial. These are said to be lo-
cally convergent. Algorithms that do not require a sufficiently close starting value
are globally convergent.

2. Unconditional Convergence: Some algorithms will only converge if the given polyno-
mial has some special properties, e.g., all zeros simple or no equimodular zeros. These
algorithms are conditionally convergent. If an algorithm is convergent (locally or
globally) for all polynomials, it is unconditionally convergent.

3. A posteriori Estimates: In practice, any algorithm must be artificially terminated after
a finite number of steps. The approximation at this stage, zn, say, will not in general
be identical to a zero ξ of the polynomial. Under such circumstances, it is desirable
that we be able to calculate, from the data provided by the algorithm, a bound βn for
the error |zn − ξ| of the last approximation. A precise statement can then be made
that there is at least one zero of the polynomial in the disk |z − zn| ≤ βn. Certain
algorithms incorporate the calculation of such a bound βn in their definition, while
for others it can be computed from the data given.
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4. Speed of Convergence: The concept of order is frequently used as a measure of the
ultimate speed of convergence of an algorithm. The order ν is defined as the supremum
of all real numbers α such that

lim sup
n→∞

|zn+1 − ξ|
|zn − ξ|α

<∞.

Newton’s method, for example, has the order of convergence ν = 2, which means
asymptotically that the number of correct decimal places is doubled at each step.
Thus, the higher the order of convergence, the faster |z − ξ| converges ultimately to
zero.

5. Simultaneous Determination of All Zeros: Most algorithms determine one zero at
a time. If the zero has been determined with sufficient accuracy, the polynomial is
deflated and the algorithm is applied again on the deflated polynomial. It may be
desirable for practical as well as theoretical reasons [Hen74] to determine all zeros
simultaneously.

6. Cluster Insensitivity: A major problem in the numerical determination of zeros is
presented by the occasional occurrence of the ‘clusters’ of zeros, i.e., sets of several
zeros that either coincide or are close. The performance of many otherwise excellent
methods is worsened in the presence of a cluster. We therefore want methods that are
insensitive to clusters.

7. Numerical Stability: In real life, all computing is done in the finite system of discrete
and bounded numbers of a machine, instead of the field of real or complex numbers.
The set of numbers provided by floating point arithmetic is finite. Thus, algorithms
originally devised to work in the continuum are adapted to ’machine numbers’ by
the devices of rounding and scaling. Not all algorithms are equally insensitive to this
adaptation. By numerical stability, we mean the lack of sensitivity to rounding and
scaling operations or more precisely, the sensitivity of the algorithm should be no
greater than that inherent in the ill-conditioning of the zerofinding problem.

2.2 Bairstow’s Method

This method is only valid for polynomials with real coefficients. For such polynomials, we
know that any complex roots occur as conjugate pairs. The method attempts to find the
zeros of such polynomials by searching for pairs of zeros which generate real quadratic
factors. Thus, if we define

P (z) = anz
n + an−1z

n−1 + . . .+ a1z + a0, (2.1)

where the ai’s are real, then dividing P by the real quadratic polynomial z2 + pz + q, we
can write

P (z) ≡ (z2 + pz + q)(bn−2z
n−2 + . . .+ b0) +Rz + S (2.2)

where Rz + S is the remainder. Equating coefficients gives

bk = ak+2 − pbk+1 − qbk+2, k = n− 2, . . . , 0 (2.3)

and
bn−1 = bn = 0.
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Hence, the coefficients bk can be regarded as uniquely defined functions of p and q. Also, R
and S are functions of p and q and are defined (from equating coefficients) by

R(p, q) = a1 − pb0 − qb1 ≡ b−1, S(p, q) = a0 − qb0 (2.4)

The solution of
R(p, q) = 0 and S(p, q) = 0 (2.5)

yields p and q such that (z2 + pz + q) is a quadratic factor of P .
Bairstow suggested that the equation (2.1) be solved by Newton’s process of successive

approximations [Bro75, GR67]. Let pi and qi, pi+1 and qi+1 denote respectively the results
of the ith and (i+ 1)st steps in the iteration. A sequence (pi, qi) is generated by

[
pi+1

qi+1

]
=

[
pi
qi

]
−




∂R
∂p

∂R
∂q

∂S
∂p

∂S
∂q




−1 [
R
S

]

p = pi
q = qi

i = 0, 1, 2, . . .

Thus

pi+1 = pi −
1

J

[
R
∂S

∂q
− S ∂R

∂q

]

p = pi
q = qi

(2.6)

qi+1 = qi −
1

J

[
S
∂R

∂p
−R∂S

∂p

]

p = pi
q = qi

(2.7)

where

J =

∣∣∣∣∣∣∣

∂R
∂p

∂S
∂p

∂R
∂q

∂S
∂q

∣∣∣∣∣∣∣ p = pi
q = qi

Differentiating the equations (2.3) and (2.4) with respect to p and q gives

∂R

∂p
=− p∂b0

∂p
− q∂b1

∂p
− b0,

∂R

∂q
=− p∂b0

∂q
− q∂b1

∂q
− b1

∂S

∂p
=− q∂b0

∂p

∂S

∂q
=
∂b−2

∂q
+ p

∂b−1

∂q
(2.8)
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and

∂bk
∂p

=− bk+1 − p
∂bk+1

∂p
− q∂bk+2

∂p
, k = n− 3, . . . , 0,−1

∂bn−2

∂p
=
∂bn−1

∂p
= 0 (2.9)

∂bk
∂q

=− bk+2 − p
∂bk+1

∂q
− q∂bk+2

∂q
, k = n− 4, . . . , 0,−1,−2

∂bn−3

∂q
=
∂bn−2

∂q
= 0 (2.10)

If we define the recurrence relation

dk =− bk+1 − pdk+1 − qdk+2, k = n− 3, . . . , 0,−1

dn−2 =dn−1 = 0 (2.11)

then we have from (2.9) and (2.10) that

∂bk
∂p

= dk,
∂bk−1

∂p
= dk, k = n− 3, . . . , 0,−1 (2.12)

and

∂R

∂p
=d−1,

∂R

∂q
= d0

∂S

∂p
=− qd0,

∂S

∂q
= d−1 + pd0 (2.13)

Therefore, (2.6) and (2.7) become

pi+1 =pi −
1

J
[b−1(d−1 + pid0)− (b−2 + pib−1)d0], (2.14)

qi+1 =qi −
1

J
[(b−2 + pib−1)d−1 + d0b−1qi] (2.15)

where
J = d2

−1 + pid0d−1 + qid
2
0. (2.16)

After obtaining a quadratic factor, the polynomial p is deflated and the same procedure is
applied to the deflated polynomial.

This method, when it converges, is quadratically convergent. However, such convergence
requires a very good initial approximation though the method uses only real arithmetic to
compute even complex roots. It is limited to real polynomials and therefore is not so conve-
nient in practice as one is usually interested in polynomials with complex coefficients as well.
Unless modified, the method is quite slow to converge to quadratic factors of multiplicity
greater than 1. Extensions, however, exist and can be see in [Art72].

2.3 Bernoulli’s Method

Bernoulli’s method exploits the connection between a linear difference equation and the
zeros of its characteristic polynomial in order to find the zeros of a polynomial without
knowing crude first approximations. Given the polynomial

p(z) = a0z
k + a1z

k−1 + . . .+ ak (2.17)

5



with k ≥ 1 and a0ak 6= 0, the difference equation which has p as its characteristic polynomial
is given as

a0xn + a1xn−1 + . . .+ akxn−k = 0. (2.18)

Given any starting values x0, x1, . . . , xk−1, the corresponding solution of (2.18) can be found
numerically by the recurrence relation:

xn = − 1

a0
(a1xn−1 + a2xn−2 + . . .+ akxn−k)

n = k, k + 1, k + 2, . . .

If we suppose that the zeros z1, z2, . . . , zk of p all have multiplicity 1 (i.e. distinct zeros)
then the solution of (2.18) can be expressed in the form

xn = c1z
n
1 + c2z

n
2 + . . .+ ckz

n
k . (2.19)

The cj’s can be computed if the zeros are known. But since these are not known, the cj ’s
are unknown. However, the quotients

qn =
xn+1

xn

using (2.19) are analytically represented by

qn =
c1z

n+1
1 + c2z

n+1
2 + . . .+ ckz

n+1
k

c1zn1 + c2zn2 + . . .+ ckz
n
k

. (2.20)

Furthermore, suppose p has a single dominant zero,1 and let this be z1 for our case (this
zero will be real if the coefficients of p are real). Also, assume that the starting values of
x0, x1, . . . , xk−1 of the solution {xn} of (2.18) are chosen so that c1 6= 0. 2 Under these
assumptions, we may write (2.20) as

qn = z1

1 + c2
c1

(
z2
z1

)n+1
+ . . .+ ck

c1

(
zk
z1

)n+1

1 + c2
c1

(
z2
z1

)n
+ . . .+ ck

c1

(
zk
z1

)n . (2.21)

Under our second supposition, as n→∞,

(
zj
z1

)n
→ 0 for j = 2, 3, . . . , k,

and it follows that
lim
n→∞

qn = z1. (2.22)

Having obtained this zero, the polynomial (2.17) is deflated and the procedure repeated on
the deflated polynomial. Thus, this method can only furnish one or two zeros of a given

1If a polynomial p of degree K has zeros z1, z2, . . . , zk, not necessarily distinct, then the zero zj is called
dominant if its modulus is strictly greater than the moduli of the other zeros, i.e. |zj | > |zi| for i 6= j.

2It can be shown [Hen64] that this condition is always satisfied if the starting values are chosen so that

x−k+1 = x−k+2= . . . = x−1 = 0, x0 = 1.
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polynomial at a time, and these zeros are those of largest or smallest magnitude. So, if a
zero of intermediate modulus is desired, it is necessary to compute all larger (or all smaller)
zeros and then ‘remove’ them from the polynomial by deflation.

We have obtained the above result on the assumption that the dominant zero, z1, is real
and distinct. Nevertheless, (2.22) holds when z1 is multiple but real. The necessary changes
in the method in such a case have been described in detail in [Hen82]. Note that if there
is a dominant zero that is complex (2.22) no longer holds. Also if z2 has nearly the same
magnitude as z1 the convergence process is very slow. Hence, as a general-purpose method,
this method has little in its favour. However, if the zero of largest or smallest magnitude
(by considering p(1/z) as described in [Hen82]) is the zero that is desired and is distinct,
Bernoulli’s method can be useful.

An extension of this method due to Rutishauser, with the advantage that it provides
simultaneous approximations to all zeros, is the Quotient-Difference (QD) algorithm. How-
ever, unless special measures are taken, it is only linearly convergent. We do not discuss
this here.

2.4 Graeffe’s Root-squaring Method

Graeffe’s method basically replaces the equation

p(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0 (2.23)

by an equation still of degree n, whose roots are the squares of the roots of (2.23). By
iterating this procedure, the roots of unequal magnitude become more widely separated in
magnitude. By separating the roots sufficiently, it is possible to calculate the roots directly
from the coefficients. However, the process is not suitable for polynomials some of whose
roots are of equal magnitude.

Suppose the roots of (2.23) are αi, i = 1, . . . , n and assume an = 1. Then, writing p0(z)
for p(z), we have

p0(z) =

n∏

i=1

(z − αi). (2.24)

Using this we can write

p1(w) = (−1)np0(z)p0(−z) =
n∏

i=1

(w − α2
i ),

w = z2, (2.25)

so that the zeros of p1(w) are precisely the squares of the zeros of p0(z). Thus the sequence

pr+1(w) = (−1)npr(z).pr(−z), r = 0, 1, . . . (2.26)

is such that the zeros of each polynomial are the squares of the zeros of the previous

polynomial. If the coefficients of pr(z) are denoted by a
(r)
j , j = 0, 1, . . . , n it can be shown

that

a
(r+1)
j = (−1)n−j


(a

(r)
j )2 + 2

min(n−j,j)∑

k=1

(−1)ka
(r)
j−ka

(r)
j+k


 . (2.27)

7



To use the sequence of polynomials {pr(z)}, we need a relationship between the coefficients
of the polynomial and its zeros. This relationship is expressed by the equation

a
(r)
j = (−1)n−jSn−j(α2r

1 , α
2r
2 , . . . , α

2r
n ), j = 0, . . . , n− 1, (2.28)

where Sk(x1, x2, . . . , xn) is the kth symmetric function of x − 1, . . . , xn. This function is
defined by the equation

Sk(x1, x2, . . . , xn) =

n∑

1

cxr1xr2 . . . xrk (2.29)

where the notation
∑

c denotes that the sum is over all combinations of k out of the digits
1 to n in the subscripts. Thus, for example,

a
(r)
n−1 = −S1(α2r

1 , α
2r
2 , . . . , α

2r
n ) =

n∑

k=1

α2r
k (2.30)

Let
αk = ρke

iφk k = 1, . . . , n.

Suppose first that all the roots are distinct in magnitude and ordered so that

ρ1 > ρ2 > . . . > ρn. (2.31)

We write (2.30) as

a
(r)
n−1 = −α

[
1 +

n∑

k=2

(
αk
α1

)2r
]
.

Then using (2.31), we have

lim
r→∞

|a(r)
n−1|1/2r = |α1|.

Therefore, for sufficiently large r,

ρ1 ≈ |a(r)
n−1|1/2r.

Similarly, we have

a
(r)
n−2 =

n∑

1

cα
2r

r1α
2r

r2 = α2r

r1α
2r

r2

[
1 +

n∑

1,(r1,r2)6=(1,2)

(
αr1αr2
α1α2

)2r
]
,

and therefore, for sufficiently large r,

ρ2 ≈
1

ρ1
|a(r)
n−2|1/2r ≈

∣∣∣∣∣
a

(r)
n−2

a
(r)
n−1

∣∣∣∣∣

1/2r

.

Continuing in this way, we have in general

ρk ≈
∣∣∣∣∣
a

(r)
n−k

a
(r)
n−k+1

∣∣∣∣∣

1/2r

k = 3, . . . , n. (2.32)

In practice “sufficiently large r” means that we must continue the root-squaring process
until the approximations to the magnitudes have stabilised to the number of decimal places
we want. When the roots are all separated, then once we have the magnitudes, determining
the sign is easily accomplished by inserting the magnitude into (2.23).

Graeffe’s method is globally, although not unconditionally, convergent and in many cases
produces all zeros simultaneously with quadratic convergence.
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2.5 Müller’s Method

This method extends the idea of the secant method [Gau97, Ueb95, Tra64] which works
with a linear polynomial, to a quadratic polynomial.

Given three previous estimates z(k−2), z(k−1) and z(k), for an unknown root, a new value
is computed by

z(k+1) = z(k) + hkqk, (2.33)

where

qk =
−2Ck

Bk ±
√
B2
k − 4AkCk

, (2.34)

Ck = (1 + rk)P (z(k)), (2.35)

Bk = (2rk + 1)P (z(k))− (1 + rk)
2P (z(k−1)) + r2

kP (z(k−2)), (2.36)

Ak = rkP (z(k))− rk(1 + rk)P (z(k−1)) + r2
kP (z(k−2)), (2.37)

hk = z(k) − z(k−1), and (2.38)

rk = hk/hk−1. (2.39)

The values qk computed in (2.34) may yield too large changes for z(k) which possibly leads
to another root and causes slow convergence [LF94]. This can be circumvented by allowing
a fixed maximum increase of |qk| from one iteration step to the next. Care must also be
taken when computing P (z(k)) which is necessary to compute Ak, Bk and Ck. If an estimate
of |P (z(k))| indicates a value greater than the maximum possible number, we choose

z(k+1) = z(k) + hkqk/2 (2.40)

in place of (2.33) and repeat this until no overflow occurs. The algorithm stops whenever
the actual value |P (z(k))| is smaller than the smallest value |P (zmin)| until now and

∣∣∣∣∣
zmin − z(k+1)

zmin

∣∣∣∣∣ < ε (2.41)

holds where ε is some small number depending on the computer accuracy. To avoid a lot of
iterations where condition (2.41) fails we allow only a fixed maximum number of iterations.

Convergence for Müller’s method is superlinear (1.84). However, it is one of those meth-
ods that will converge to both real and complex roots from a real initial approximation.

2.6 Newton’s Method

We briefly describe a well-known iterative method for approximating the zeros of a poly-
nomial equation. Starting with a given initial approximation x0, a sequence x1, x2, x3, . . . is
computed where xn+1 is given by

xn+1 = xn + hn (2.42)

where

hn = − p(xn)

p′(xn)
.
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The iterative process can be stopped when |hn| has become less than the largest error one
is willing to permit in the root.

This method is only locally convergent and will converge to complex zeros only if the ini-
tial approximation is complex. However, it can be suitably modified (see for example [RR78,
§8.2]) to compute zeros of complex polynomials. When Newton’s method does converge, the
convergence is quadratic to roots that are simple.

Note: Experiments have shown that a good combination of Müller’s and Newton’s
methods can produce a reliable and fast program [LF94]. Müller’s method is used to compute
an estimate for the polynomial. This estimate is then used as the initial approximation in
Newton’s method and once it converges, the polynomial is deflated and the procedure
repeated. Results from such experiments have indicated that this combination is better
than the eigenvalue method in speed and accuracy especially for high degree polynomials
(n > 500).

2.7 Jenkins-Traub Algorithm

The Jenkins-Traub method (J-T) is a three-stage method that calculates the zeros of the
polynomial

p(z) = a0z
n + a1z

n−1 + . . .+ an−1z + an, (2.43)

which may be written in terms of its factors as

p(z) =

k∏

j=1

(z − αj)mj , (2.44)

where αi are the zeros we wish to compute and, of course, mi is the multiplicity of the root
αi and hence satisfies

∑k
j=1mj = n. Notice that we have assumed here that a0 = 1, but

this is only for convenience and no generality is lost.
Zeros are calculated one at a time and zeros of multiplicity m are found m times. The

zeros are found in roughly increasing order of magnitude to avoid instability arising from
deflation with a large zero [Wil63]. After each zero is found the polynomial is deflated and
the algorithm applied to the deflated polynomial. In the outline of the algorithm below, we
take p to be either the original polynomial or a polynomial obtained by deflation.

From (2.44), we have that

p′(z) =

k∑

j=1

mjPj(z) (2.45)

where

Pj(z) =
p(z)

z − αj
, j = 1, 2, . . . , k. (2.46)

We now generate a sequence of polynomials H (λ)(z) starting with H(0)(z) = p′(z), each of
the form

H(λ)(z) =
k∑

j=1

c
(λ)
j Pj(z) (2.47)

with c
(0)
j = mj, j = 1, . . . , k. If we can choose such a sequence so that H (λ)(z)→ c

(λ)
1 P1(z),

that is, so that

d
(λ)
j =

c
(λ)
j

c
(λ)
1

→ 0, j = 2, . . . , k, (2.48)
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then the sequence {tλ} of approximations to α1 can be found and tλ defined by

tλ+1 = sλ −
p(sλ)

H̃λ+1(sλ)
(2.49)

where

H̃(λ)(z) =
H(λ)(z)
∑p

j=1 c
(λ)
j

(2.50)

is monic and {sλ} is an arbitrary sequence of complex numbers. Indeed using (2.46) and
(2.48) in (2.49), we obtain

tλ+1 = sλ −
p(sλ)

∑k
j=1 c

(λ+1)
j∑k

j=1 c
(λ+1)
j Pj(sλ)

= sλ −
P1(sλ)(sλ − α1)c

(λ+1)
1

(
1 +

∑k
j=2 d

(λ+1)
j

)

P1(sλ)c
(λ+1)
1

(
1 +

∑k
j=2 d

(λ+1)
j

Pj(sλ)
P1(sλ)

) ,

which approaches sλ − (sλ − α1) = α1. The H(λ)(z) are generated by

H(λ+1)(z) =
1

z − sλ

[
H(λ)(z)− H(λ)(sλ)

p(sλ)
p(z)

]
. (2.51)

Evidently, such a sequence can be generated so long as p(sλ) 6= 0. Otherwise, sλ is a zero of
p(z) and so p(z) can be deflated and the process repeated. In fact, using (2.46) and (2.47)
in (2.51), we find that

H(λ+1)(z) =
p(z)

z − sλ




k∑

j=1

c
(λ)
j

z − αj
−

k∑

j=1

c
(λ)
j

sλ − αj




=
k∑

j=1

c
(λ+1)
j Pj(z), (2.52)

where

c
(λ+1)
j =

cλj
αj − sλ

, j = 1, . . . , k. (2.53)

Hence,

c
(λ+1)
j =

c
(λ)
j

αj − sλ
=

c
(λ+1)
j

(αj − sλ)(αj − sλ−1)
= . . . =

mj∏λ
t=0(αj − st)

, j = 1, . . . , k (2.54)

and if no st is a zero of p(z), c
(λ)
j 6= 0 for all j. The method can be summarised as follows:

1. Stage One: sλ = 0

H(0)(z) = p′(z),

H(λ+1)(z) =
1

z

[
H(λ)(z)− H(λ)(0)

p(0)
p(z)

]
, λ = 0, 1, . . . ,M − 1.
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2. Stage Two: sλ = s
Take β to be a positive number such that β ≤ min |αi| and let sλ be such that |sλ| = β
and

|sλ − α1| < |s− αi|, i = 2, . . . , k.

(The zero labelled α1 depends on the choice of sλ)

H(λ+1)(z) =
1

z − s

[
H(λ)(z)− H(λ)(s)

p(s)
p(z)

]
, λ = M,M + 1, . . . , L− 1

3. Stage Three: sλ = tλ. Take

tλ = s− p(z)

H̃(λ+1)(z)

and let

H(λ+1)(z) =
1

z − sλ

[
H(λ)(z)− H(λ)(sλ)

p(sλ)
p(z)

]

sλ+1 = sλ −
p(sλ)

H̃(λ+1)(sλ)
, λ = L,L+ 1, . . . .

Note that the termination of Stage 1 is not crucial. Indeed, stage 1 is not necessary for
theoretical considerations [JT70b, RR78]. Its main purpose, however, is to accentuate the
smaller zeros. Numerical experience indicates that M = 5 is suitable.

The parameter s in stage 2 (fixed shift process) is chosen so that |s| = β, β = min |αj |, j =
1, . . . , k and so that |s − α1| < |s − αj |, j = 2, . . . , k. β is the unique positive zero of the
polynomial

zn + |a1|zn−1 + . . .+ |an−1|z − |an|,
and is easily computed by Newton-Raphson iteration.

The second stage is intended to separate equimodular or at least almost equimodular
zeros. In practice, L is determined when

|tλ − tλ−1| ≤
1

2
|tλ−1| and |tλ−1 − tλ−2| ≤

1

2
|tλ−2|

Stage 3 is terminated when the computed value of the polynomial at sλ is less than or
equal to some bound on the round off error in evaluating p(sλ). This stage has been shown
to be equivalent to Newton-Raphson iteration applied to a sequence of rational functions
converging to a linear polynomial [JT70b].

The J-T algorithm has the desirable feature that it is restriction-free, i.e., it converges
(globally) for any distribution of zeros. This has been rigorously proved in [JT70b]. The
algorithm is fast for all distributions of zeros. Also, few critical decisions have to be made
by the program which implements the algorithm. Shifting is incorporated into the algorithm
itself in a natural and stable way. Shifting breaks equimodularity and speeds convergence.

2.8 Eigenvalues of Companion Matrix

This method is a very accurate method for computing zeros of a polynomial. Let

p(z) = a0 + a1z + . . .+ an−1z
n−1 + anz

n, (2.55)
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and suppose (without loss of generality) an = 1. The companion matrix associated with
this polynomial is the n× n matrix [TT94, EM95, Tre01]

C =




0 −a0

1 0 −a1

1 0 −a2

. . .
...

1 −an−1



, (2.56)

and has the characteristic polynomial [EM95]

PC(z) ≡ det(zI − C) = p(z).

Thus, finding the zeros of (2.55) is equivalent to computing the eigenvalues of C. If λ is a
root of (2.55), then λ is an eigenvalue of C and the associated left eigenvector v is given by

v = (1, λ, λ2, . . . , λn−1). (2.57)

The eigenvalues of C can be found using the QR algorithm after C is first ‘balanced’ by
a diagonal similarity transformation in a standard fashion due to Parlett and Reinsch.
Experiments [LF94] have shown this method to be very accurate when compared with
other methods. However, the fact that this method uses O(n2) storage and O(n3) time as
compared to O(n) storage and O(n2) time for methods designed specifically for computing
zeros of polynomials [Mol91], becomes quite important for higher degree polynomials [LF94].
This is the algorithm used by MATLAB’s roots.

2.9 Laguerre’s Method

Let p(z) be a polynomial with roots r1, r2, . . . , rn and let z approximate the root rj for some
fixed j. This method uses p(z), p′(z) and p′′(z) to obtain a better approximation for the
root rj . Define derivatives of log p(z) as follows:

S1(z) =
p′(z)

p(z)
=

n∑

i=1

1

z − ri
, (2.58)

S2(z) = −S′1(z) =
(p′(z))2 − p(z)p′′(z)

(p(z))2
=

n∑

i=1

1

(z − ri)2
. (2.59)

We write

α(z) =
1

z − rj
, β(z) + δi(z) =

1

z − ri
(2.60)

for i = 1, 2, . . . , n, i 6= j,

where β is the mean of the collection 1
z−ri , i 6= j. Clearly, then,

n∑

i=1,i6=j
δi = 0.
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Define

δ2 =
n∑

i=1,i6=j
δ2
i . (2.61)

Using (2.60) and (2.61), we may write (2.58) and (2.59) in the form

S1 = α+ (n− 1)β (2.62)

and
S2 = α2 + (n− 1)β2 + δ2. (2.63)

Eliminating β from (2.62) and (2.63) and solving for α gives

α =
S1 ±

√
(n− 1)[nS2 − S2

1 − nδ2]

n
. (2.64)

Substituting α from (2.60) in (2.64) yields

rj = z − n

S1 ±
√

(n− 1)[nS2 − S2
1 − nδ2]

, (2.65)

where S1, S2 and δ2 are evaluated at z. Setting δ2 = 0, yields the Laguerre iteration formula

z
(k+1)
j = z

(k)
j −

n

S1 ±
√

(n− 1)[nS2 − S2
1 ]
, (2.66)

where S1 and S2 are evaluated at z
(k)
j , the current approximation to rj and are defined by

(2.58) and (2.59) respectively.
We note here that one Laguerre step requires more calculation than one step of any of

the previously described methods, since we must compute the first and second derivatives

of p at z
(k)
j . However, when there are a priori approximations to the zeros available, the

reduction in the number of iterations with Laguerre more than compensates for the extra
calculation. It is known (see for example [HP77, HPR77, RR78]) that if the zero is simple,
then the method is cubically convergent locally. For multiple roots, the convergence is linear.

Certain modifications of this method have been shown to improve convergence [HPR77].
One modification that is fourth order convergent to simple roots is the iterate

z
(k+1)
j = z

(k)
j −

n

S1 ±
√

(n− 1)(nS2 − S2
1 − nδ2

j )
,

where

δ2
j =

n∑

i=1,i6=j

[
1

z
(k)
j − z

(k)
i

− βj
]2

and

βj =
1

n− 1

n∑

i=1,i6=j

1

z
(k)
j − z

(k)
i

.

Though Laguerre’s method is exclusively for polynomial zerofinding, it belongs to a class
of methods for more general that includes other methods such as Newton’s and Ostrowski’s
[HP77]. In the next chapter, we shall explain how a modification of this method is used in
the NAG subroutine C02AFF.
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2.10 Algorithms used by some Software

Below is a table that summarises the algorithms used by some of the most popular numerical
software programs.

Source Name of Program Method

NAG F77 library C02AFF Modified Laguerre

MATLAB roots Eigenvalues of balanced companion matrix

HSL PA16 Madsen-Reid

IMSL CPOLY Jenkins-Traub

Mathematica NSolve Jenkins-Traub

Numerical Recipes zroots Laguerre

Table 2.1: Algorithms used by some commonly used numerical software.
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Chapter 3

Correction of a bug in the NAG
subroutine C02AFF

The Numerical Algorithms Group (NAG), established since 1970, specialises in developing
software for the solution of complex mathematical problems. NAG’s products span many
computing languages and platforms and their subroutines are classified broadly to cover
areas such as time series analysis (G13), non parametric statistics (G08), random number
generators (G05), eigenvalues and eigenvectors (F02), function minimisation and maximi-
sation (E04), summation of series (C06), zeros of polynomials (C02) etc. The heart of the
company is the FORTRAN 77 library, soon to be released in Mark 20, which has evolved
over the course of thirty years.

Central to this project is the C02AFF subroutine for finding zeros of a univariate poly-
nomial1. This subroutine was observed to work badly for certain polynomials and/or classes
of polynomials as we shall soon describe. To make things clear, we shall describe precisely
how the Laguerre method described in section 2.9 is used in C02AFF.

3.1 C02AFF - A modified Laguerre method

C02AFF is NAG’s subroutine for computing the zeros of a complex polynomial, i.e., a
polynomial with complex coefficients. Its sister subroutine C02AGF computes roots of real
polynomials. Both subroutines use a variant of Laguerre’s method which we shall describe
shortly. C02AFF is itself a ‘dummy’ routine which calls another subroutine, C02AFZ, in
which the modified Laguerre method is implemented. (We shall refer more to C02AFZ in
due course.) The modified method is based on the work of Brian Smith [Smi67]. For a
description of the modified Laguerre method, we consider the polynomial

p(z) = a0z
n + a1z

n−1 + . . .+ an−1z + an (3.1)

=
n∑

i=0

aiz
n−i

≡ a0

n∏

j=1

(z − zj), (3.2)

1C02AFF was first included in the NAG libraries in 1990 and replaced the former C02ADF which served
the same purpose, but was based on a method of Grant and Hitchins.
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where the ai’s are complex and, in addition, we require that a0an 6= 0 so that the polynomial
is of degree n. The cases n ≤ 2 and polynomials whose leading or trailing coefficients vanish
are treated separately. No iteration is needed for n = 2 or n = 1 since these can be obtained
directly from well-known closed formulas. Thus, we assume n ≥ 3 in what follows.

The coefficients of the polynomial are first scaled upward so that underflow does not
occur when the polynomial is evaluated near zero. C02AFZ attempts to start the iteration
process at the origin. If this is not an acceptable iterate (we shall see shortly what the
necessary conditions are), the subroutine attempts to find a suitable iterate in an annulus
about the origin known to contain the smallest zero of p. The inner radius of this annulus,
R1, is the Cauchy lower bound and is the smallest positive zero of

S(z) =
n−1∑

j=0

|aj |zn−j − |an|. (3.3)

It is computed by a Newton-Raphson iteration.
The radius of the outer circle, R2, is the minimum of the geometric mean of the magni-

tudes of the zeros G, the Fejer bound F,the Cauchy upper bound and the Laguerre bound
W , where

G =

∣∣∣∣
an
a0

∣∣∣∣
1/n

and W =
√
n|L(ξ)|. The Fejer bound, F , at the point ξ is the magnitude of the zero zs of

smaller magnitude of the quadratic equation

p′′(ξ)
2n(n− 1)

µ2 +
p′(ξ)
n

µ+
p(ξ)

2
= 0. (3.4)

Thus, F = |zs|.
The Laguerre step L(ξ) is related to the zero zs by

L(ξ) =
zs

zs
(n−2)p′(ξ)
np(ξ) + n− 1

. (3.5)

The origin is accepted as an initial iterate if the Laguerre step from the origin lies within
the outer circle of the annulus. A trial point z0 in this annular region is accepted as an
initial iterate if the next iterate z1 = z0 + L(z0) lies within the annulus.

Once an initial iterate has been found, subsequent iterates are determined by the fol-
lowing conditions. For j = 0, 1, . . .

1. zj+1 = zj + L(zj), and |p(zj)| > |p(zj+1)| where L(zj) may be a modified Laguerre
step, and

2. zj+1 + L(zj+1) lies inside a circular region about the iterate zj of radius F known to
contain a zero of p(z), i.e., L(zj+1)| ≤ F .

The modified Laguerre step is

L(zj+1) =





L(zj+1) if |L(zj+1)| ≤ F/2,

FL(zj+1)
2|L(zj+1)| if F/2 < |L(zj+1)| ≤ F.

(3.6)
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This step may be further modified if the first criterion is not satisfied. If |p(zj) + L(zj)| ≥
|p(zj)| then L(zj) is halved and (1) is re-tested. This is repeated until both conditions are
satisfied.

The iteration procedure stops when the polynomial value at an iterate becomes smaller
than a bound on the rounding error in the polynomial value evaluated at that iterate (this
is computed within the subroutine C02AFY).

3.2 The Bug

Peter Brazier-Smith, working for Topexpress Ltd in 1991, noticed a bug in C02AFF when
computing the dispersion relation for vibrations of an infinite fluid-loaded cylindrical shell.
The shell was modelled with Arnold and Warbuton’s 8th order thin shell model, and this
resulted in an 8th order polynomial equation to be solved. This was reported to NAG
by David Allwright2, who was the NAG site representative for Topexpress at the time.
Investigating the bug further, Allwright came up with the case

z3 + iz2 + a, (3.7)

where a is any complex number taken from the region shown in figure 3.1. The bug also
appears for polynomials of the form z3 − iz2 − b, where b is from the reflection along the
x-axis of the region in figure 3.1. Indeed, suppose we wish to compute the roots of the
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160
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Im
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Figure 3.1: Region for trailing coefficient a for which C02AFF fails

polynomial
p(z) = z3 + iz2 + 20i. (3.8)

2The bug in C02AGF was found by David Allwright, when working on a problem in optimal control of
surge and stall in rotating compressors, also at Topexpress. He also came up with the example (z2 +az+ b)3

for which C02AGF fails.
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MATLAB’s roots tells us that the three zeros of p are

-2.31235262825422 - 1.70935513678553i

2.31235262825422 - 1.70935513678553i

0 + 2.41871027357107i

An attempt to solve this using C02AFF returns

** The method has failed. This error is very unlikely to occur.

** Please contact NAG.

** ABNORMAL EXIT from NAG Library routine C02AFF: IFAIL = 2

** NAG hard failure - execution terminated

Note: IEEE floating-point exception flags raised:

Inexact; Underflow;

See the Numerical Computation Guide, ieee_flags(3M)

It was also noticed that for monic polynomials of degree 3, with the other coefficients being
random, the subroutine failed at an average rate of about 4 × 10−4 (Allwright, personal
communications). Some polynomials took a long time to compute the roots of certain of
these polynomials. In recent experiments, the longest took 555.75 seconds ≈ 9.25 minutes for
a polynomial of degree just 3! Apart from these, C02AFF is an apparently perfect routine,
as our comparison with MATLAB’s roots has shown.

Our strategy for tracking down the source of this bad behaviour in the NAG code has
been to simplify the code as much as possible whilst preserving the properties of the bug.
This has enabled us to understand C02AFF in much greater detail as well as to home in
on the bug. We also mimicked the behaviour of this code by writing an equivalent piece of
MATLAB code, MC02AFZ. Our MATLAB code failed to fail. Thus, we were able to tell,
eventually, when and where failure set into C02AFF.

We showed that our MATLAB equivalent of C02AFZ worked correctly by ensuring that
it also computed the roots of ‘good’ polynomials correctly. For example, computing the
roots of z3 − 5z2 + iz − 1 we have for MC02AFZ

>> mc02afz([1 -5 1i -1])

ans =

5.04672583446957 - 0.19483090323035i

-0.03676011243829 + 0.55236250815270i

-0.00996572203128 - 0.35753160492235i

C02AFF returns

5.0467258344696 -0.19483090323035

-3.6760112438289D-02 0.55236250815270

-9.9657220312807D-03 -0.35753160492235

and MATLAB’s roots returns

>>roots([1 -5 1i -1])

ans =

5.04672583446957 - 0.19483090323035i

-0.03676011243829 + 0.55236250815270i

-0.00996572203128 - 0.35753160492235i.
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Indeed both C02AFF and MC02AFZ use just two iterations to obtain the first root of
this polynomial. In this and other examples where MC02AFZ and C02AFF were used, we
observed agreement to many digits of the iterates along the way to convergence.

Further investigations into C02AFZ led us into C02AFY — the subroutine responsible
for evaluating a polynomial, its first derivative and half its second derivative at a complex
point. It also returns an estimate on the error in the polynomial value at this point. We
found out that it evaluated half of the second derivative correctly, but failed to return this
correct value because both the real and imaginary parts of this result were erroneously
assigned the real part! Needless to say how catastrophic this typographical error can be.

Bug in C02AFY

The line
PDPRIM(2) = WR

should be replaced by
PDPRIM(2) = WI

Hence, if the polynomial evaluated at a point was purely imaginary, the subroutine returned
(0.,0.). This became a problem as this value eventually became the leading coefficient of
the polynomial we described in equation (3.4) for computing the Fejer bound. The outcome
was that one of the roots of this quadratic equation was assigned some large value. This led,
of course, to repeated halving in an attempt to satisfy the first condition of the modified
Laguerre. This is why a follow up of the failure case reveals over a thousand unsuccessful
iterations!

We reported the discovery of this bug to NAG on 15 August 2001 and it was immediately
corrected in time for the Mark 20 release of the library.

3.3 Testing Zerofinding Programs

According to [JT74] which is a standard guide to testing zerofinding programs, it is essential
in testing these that one checks for: program robustness, convergence difficulties, specific
weaknesses of the algorithm and reliability and efficiency. We summarise the requirements
of each of these below.

3.3.1 Checking program robustness

Program robustness here refers to the ability of a program to degrade gracefully near the
boundary of the problem space where the algorithm applies. To achieve this, it is essential
to ask whether the program:

• tests if a leading coefficient is zero or ‘nearly’ zero. If it is exactly zero, the degree of
the polynomial is incorrect;

• tests if a trailing coefficient is zero, or ‘nearly’ zero. If it is exactly zero, there is a zero
of the polynomial at the origin. It can be detected directly and the problem reduced
to one of lower degree;

• handles lower degree cases properly;

• scales coefficients to avoid exponent underflow and overflow difficulties;
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• specifies a finite computation; and

• provides a failure exit or a testable failure flag.

3.3.2 Testing for Convergence Difficulties

In section 2.1, we discussed the importance of convergence of an algorithm. The issue here
is: how do we decide when to terminate the sequence and accept the value obtained? And,
if the sequence is not converging, or is converging slowly, how do we detect this and what
do we do? A satisfactory way of ending a converging sequence of iterates is to stop when the
polynomial value becomes dominated by the roundoff error in evaluating the polynomial. A
number of polynomials have been suggested [JT74] to check issues dealing with convergence.
The polynomial

P1(z) = B(z3 − z2 − A2z + A2) = B(z − A)(z + A)(z − 1) (3.9)

can be used with large and small A to test that large and small zeros do not cause the
termination criterion to fail and with B large and small to ensure that large and small
polynomial coefficients do not similarly cause failures.

P2(z) =

r∏

i=1

(z − i) (3.10)

with zeros at 1, 2, . . . , r where r is chosen small enough that coefficients of the polynomial
are exactly representable in the precision used, can be used to test convergence for ill-
conditioned polynomials.

P3(z) =
r∏

i=1

(z − 10−i) (3.11)

with zeros at 10−1, 10−2, . . . , 10−r where r is chosen small enough that the constant term
does not overflow, may be used to test whether a termination criterion based on roundoff
error analysis fails.

Multiple zeros or nearly multiple zeros cause convergence difficulties for many algo-
rithms. The following polynomials have been suggested to check the performance of the
program on multiple or nearly multiple zeros.

P4(z) = (z − .1)3(z − .5)(z − .6)(z − .7), (3.12)

P5(z) = (z − .1)4(z − .2)3(z − .3)2(z − .4), (3.13)

P6(z) = (z − .1)(z − 1.001)(z − .998)(z − 1.00002)(z − .99999), (3.14)

P7(z) = (z − .001)(z − .01)(z − .1)(z − .1 + Ai)(z − .1− Ai)(z − 1)(z − 10),(3.15)

with A chosen to be 0, 10−10, 10−9, 10−8, 10−7, 10−6, and

P8(z) = (z + 1)5. (3.16)

Together with P8, the polynomial

P9(z) = (z10 − 10−20)(z10 + 1020) (3.17)

which has two sets of equimodular zeros, may be used to test an algorithm’s behaviour
towards equimodular zeros.
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3.3.3 Defects in Program Implementing a Particular Algorithm

We make mention here of the deflation process. Deflation using the Horner recurrence
[Wil63] is unstable if a zero considerably larger in modulus than a smaller zero is removed
first. The polynomials

P10(z) = (z −A)(z − 1)(z − A−1), (3.18)

with A = 103, 106, or 109, and

P11(z) =
M∏

k=1−M
(z − e ikπ2M )

3M∏

k=M

(z − .9e ikπ2M ) (3.19)

with M = 15, 20, 25, can be used to check stability of deflation.

3.3.4 Assessment of Performance

By doing tests with randomly generated polynomials, one can gather statistics on the per-
formance of the program with respect to the reliability, accuracy and cost prediction. There
are many ways that one may use to generate random polynomials and particular choices
may affect the quality of the performance evaluation greatly. We shall not pursue this fur-
ther here (see [JT74]), but we make mention of the kind of random polynomials used to test
how widely applicable a program may be, since the zeros vary widely. These polynomials
are monic and have their other coefficients chosen randomly by taking the mantissa and
exponents from separate uniform distributions, i.e., coefficients of the form

a1 × 10e1 + ia2 × 10e2 , (3.20)

where ai and ei (i = 1, 2) are drawn from the uniform distribution on the intervals [−1, 1]
and [−10, 10] respectively (see [TT94]).

3.4 Tests on C02AFF

The bug found in C02AFY seems to have solved all the problems that have been previ-
ously encountered while using C02AFF. Here we describe tests carried out to vindicate this
statement.

3.4.1 Reported Failures

NAG provided us with some of the failures that were reported over the last decade. The
modified version of C02AFF passed this test with no problem at all.

3.4.2 Tests with Random Polynomials

We already indicated in 3.2 that a failure rate of about 4× 10−4 was observed from exper-
iments with degree 3 monic polynomials and with other coefficients random and complex.
Mention was also made of the extremely long time taken to compute roots of one of some
polynomials. Experiments conducted with the corrected C02AFF indicate the absence of
these obnoxious behaviours. Indeed, the whole process of computing the roots of 106 poly-
nomials took ≈ 5.5 minutes.
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Chapter 4

Comparisons of C02AFF with
other Methods

Here we describe experiments carried out to compare NAG’s C02AFF (with the bug cor-
rected) with other commonly used zerofinders. We did our comparisons by producing scatter
plots of the errors in a given pair of zerofinders. For these plots, we used a random sample
of one hundred degree-10 monic polynomials with coefficients like those described in (3.20).

4.1 Method

Our codes for PA16 1 and CPOLY 2 were taken from the Web. Our first zerofinder, CPOLY,
uses the Jenkins-Traub algorithm (section 2.7). The second zerofinder we compare with is
MATLAB’s ROOTS, which constructs the associated companion matrix of the polynomial.
PA16, our third zerofinder, uses the method of Madsen-Reid to compute zeros. Finally,
zroots, taken from Numerical Recipes [PFTV86], uses Laguerre’s method as described in
section 2.9.

First we compute the “exact” roots of each polynomial by computing the eigenvalues
of the associated companion matrix in quadruple precision (≈ 34 digits) using a LAPACK
subroutine for computing the eigenvalues of a general complex matrix. The rest of our
computations were carried out in double precision (≈ 16 digits). First we make sure that
our code computes roots of polynomials correctly. The roots of the polynomial

p(z) = (z − 1/3)(z + 1/3)(z − i)(z + 1/4)(z − 2),

are given as

(-.1925929944387235853055977942584927D-33,0.1000000000000000000000000000000000D+01)

(-.3333333333333333333333333333333351D+00,-.1808486739410877895852999023588519D-32)

(-.2499999999999999999999999999999988D+00,0.1533549716042961370455651157697598D-32)

(0.3333333333333333333333333333333332D+00,0.4004161607186613511584828690146143D-33)

(0.2000000000000000000000000000000000D+01,-.2167450215557359064129417219027908D-33),

by our code, and these are close enough to the exact roots. We used MATLAB to compute
the errors for the various zerofinders and create their scatter plots.

1See http : //hsl.rl.ac.uk/acuk/hslforacuk.html/.
2Taken from TOMS algorithm 419 in http : //www.netlib.org/.
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4.2 Results

Figure 4.1 shows the scatter plot for the error in CPOLY against error in C02AFF for a
hundred degree-10 polynomials with random coefficients in the sense spelled out in section
3.3.4. It indicates that both methods show reasonably close accuracy in their approximations
to the zeros of the random polynomials. However, our experiments show that CPOLY takes
less time to compute zeros.
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Figure 4.1: Scatter plot showing error in CPOLY against error in C02AFF.

A comparison of C02AFF and roots is shown in figure 4.2. The plot suggests that
C02AFF is more accurate than roots in most cases. The scatter plot suggests that roots

can only get 10−16 accuracy relative to the largest zeros, whereas C02AFF can get 10−16

accuracy relative to the zero in question.
Our comparison of C02AFF with Numerical Recipe’s zroots which uses Laguerre’s

method, reveals that C02AFF is a better zerofinder. HSL’s PA16 turns out to be more
accurate than C02AFF in many cases. The scatter plot for this is shown in figure 4.3.

Figure 4.4 shows a summary of the time taken for each of the programs to compute the
roots of a hundred polynomials of varying degree. It is clear from this that roots takes the
longest time in all cases. PA16 takes the least time to compute the roots in practically all
cases we tried.

Note: Our attempt to compare computation times of the various programs for polyno-
mials of even higher degree led us to, apparently, another bug in C02AFF. From experiments
with random polynomials of degree 40 and higher, we noticed that C02AFF was unable to
compute the zeros for some of the 100 polynomials. A follow up of this phenomenom led
us into the subroutine C02AGX, but time has not allowed us to further investigate this
behaviour.
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Figure 4.2: Scatter plot showing error in ROOTS against error in C02AFF.
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Figure 4.3: Scatter plot showing error in PA16 against error in C02AFF.
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Figure 4.4: Computation time for 100 polynomials

From these results (see appendix for more experimental results), we would strongly
recommend NAG’s C02AFF for any zerofinding problems. With the bug corrected, it is
both efficient and reliable. However, it must be admitted that PA16 appears to be even
better on both counts.

4.3 A Note on Error Bounds

We are interested in finding bounds on how close the exact roots lie to out numerical
approximations.

Suppose z∗ is an approximate root and write

f(z∗ + ζ) = g(ζ) = b0ζ
n + b1ζ

n−1 + . . .+ bn, (4.1)

so that bn = f(z∗) and each bn−k = f (k)(z∗)/k!. If we are approximating an isolated root,
bn is small but bn−1 is not. But if we are approximating a p-fold repeated root, or a cluster
of p close roots, then bn, bn−1, . . . , are small and bn−p is the first non-small coefficient. In
this case, we use Rouché’s theorem [Cop62].

Theorem 4.3.1 (Rouché) If f(z) and g(z) are two functions regular within and on a
closed contour C, on which f(z) does not vanish and also |g(z)| < |f(z)|, then f(z) and
f(z) + g(z) have the same number of zeros within C.

Rouché’s theorem tells us, basically, that “small perturbations to f(z) have the same number
of zeros”.
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Let us write

g(ζ) = bn−pζp +
∑

0≤j≤n,j 6=p
bn−jζj

≡ F (ζ) +G(ζ). (4.2)

In the disc |ζ| ≤ R, F (ζ) has a zero of multiplicity p at ζ = 0. Rouché’s theorem tells us
that if |G(ζ)| ≤ |F (ζ)| on the circle |ζ| = R, then F (ζ) +G(ζ) = g(ζ) = f(z∗ + ζ) also has
p zeros in the disc |z − z∗| < R.

Now,

|F (ζ)| = |bn−p|Rp and

|G(ζ)| =
∣∣ ∑

0≤j≤n,j 6=p
bn−jζj

∣∣

≤
∑

0≤j≤n,j 6=p
|bn−j|Rj

If |bn−p|Rp >
∑

0≤j≤n,j 6=p|bn−j|Rj then the second requirement of the theorem is met. In
order for this to hold for p = 1, we must find R such that

|bn−1|R > |bn|+ |bn−2|R2 + . . .+ |b0|Rn.

If |bn| is small enough, the aim is to find the smallest R > 0 satisfying this and this will
give a bound on how close the actual root is to z∗. However, if |bn−1| is too small, there
may be no R that satisfies this. We proceed to p = 2 and attempt to find R such that

|bn−2|R2 > |bn|+ |bn−1|R+ |bn−3|R3 + . . .+ |b0|Rn,

is satisfied. If this can be solved, the least R > 0 will give a bound on a disc around z∗ in
which we know 2 roots.

If this does not hold either, we continue in a similar manner for p = 3, . . .. At some
point, we hope to find a p for which it works and then (choosing R as small as possible) we
have a bound on the p-cluster.

27



Chapter 5

Conclusion

Our main aim in this project was to find a bug which has been in NAG’s zerofinding
program, C02AFF, for about a decade. This we have successfully done. We have done
tests on the corrected program that show that it is a good program. Apart from these, we
have performed comparisons with other zerofinders and our experiments have revealed that
C02AFF is one of the most efficient and reliable programs available. However, we also make
note of an apparent bug which affects the computation of roots of higher degree polynomials
by C02AFF. A little follow-up suggests that this may be directly related to the subroutine
C02AGX, but we have not been able to further investigate this behaviour.

We have also made a note on error bounds for computed solutions. Apart from looking
more closely at the method we propose and other methods, further work could be done on
the effective implementation of these bounds and incorporating this into the C02AFF code.
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Appendix A

Equivalent MATLAB codes for
C02AFZ and C02AFY

Below are the equivalent MATLAB codes for C02AFZ and C02AFY. These codes are, however, simplified,
omitting some of the error-checking features of the originals.

A.1 mc02afz.m

% A MATLAB version of the NAG subroutine C02AFZ

% for computing the zeros of polynomials using

% Laguerre’s method.

%

function [z] = mc02afz(f);

ndeg = length(f) - 1; %degree of polynomial

DU = f;

n = ndeg; N = n+1;

ihalf = 0; ispir=0; iter = 0;

cauchy = 0; %Region containing smallest

%zero has not been computed

while n>2

small = 1e-3; bigone=1.0001;

smlone=0.99999; rconst=1.445;

onepqt=1.25; gama=1; theta=2;

if ~cauchy

rtn = sqrt(n);

G = exp((log(abs(DU(N)))-log(abs(DU(1))))/n+small);

cr = DU(N-1)/DU(N);

ctemp = 2*DU(N-2)/(n*(n-1));

cf2 = DU(N-1)*2/n;

tmp = roots([ctemp cf2 DU(N)]);

c = tmp(2); cf1 = tmp(1);

cr = cr*(n-2)/n;

ctemp = cr*c + n-1;

cdiro = c/ctemp;

abdiro = abs(cdiro);

G = min(G,bigone*min(abs(c),rtn*abdiro)); G = G(1);

R = G;

S = bigone*G; %upper bound for magnitude

%of smallest zero

deflat(1:N) = abs(DU(1:N));

while R < S

T = real(deflat(1));

29



S = 0;

for i=1:n-1

S = R*S + T;

T = R*T + real(deflat(i+1));

end

S = R*S + T;

T = (R*T - real(deflat(N)))/S;

S = R;

R = R - T;

end

cauchy = 1;

upperb = min(rconst*n*R, G);

lowerb = smlone*S;

end

fejer = upperb;

G = upperb;

cdir = cdiro; abdir = abdiro; ratio = abdir/G;

dzn = 0;

fn = abs(DU(N));

f0 = fn;

spiral = 0; startd=0; contin= 1;

while contin

iter = iter + 1;

if ratio > theta

if startd

ihalf = ihalf + 1;

abscl = abscl*0.5; cl = cl*0.5;

dx = abs(real(dzn))+abs(imag(dzn));

if (dx+abscl ~= dx)

dzn = dz0 + cl;

else

if fn >= err*n^2

sprintf(’Contact Wankere \n **Unlikely Failure’)

end

contin = 0;

end

else

ispir = ispir + 1;

if spiral

c = cspir*dzn;

else

spiral = 1;

cspir = -onepqt/n + 1i;

abscl = lowerb/n^2;

ctemp = cdir/abdir;

c = ctemp*lowerb;

end

dzn = c;

end

else

startd = 1;

if (ratio > gama) & (startd | spiral | lowerb <= G)

ratio = gama/ratio;

cdir = cdir*ratio;

abdir = abdir*ratio;

end

G = fejer; cl = cdir;

abscl = abdir;

f0 = fn; dz0 = dzn;
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dzn = dz0 + cl;

end

[deflat,cf,cf1,cf2,err] = mc02afy(DU,dzn);

fn = abs(cf);

if cf == 0 % A root has been found

contin = 0; % Exit iteration loop

else

if (fn >= f0) & startd

ratio = theta*bigone;

else

cr = cf1/cf;

cf2 = cf2*2/((n-1)*n);

ctemp = cf1*2/n;

tmp = roots([cf2 ctemp cf]);

c = tmp(2); cf1 = tmp(1);

fejer = abs(c);

cr = cr*(n-2)/n;

ctemp = c*cr + n-1;

cdir = c/ctemp;

abdir = abs(cdir);

ratio = abdir/G;

fejer = min(rtn*abdir, fejer);

dx = abs(real(dzn))+abs(imag(dzn));

if (abdir <= 1e-15) contin = 0; end

end

end

end

DU = deflat;

z(n) = dzn;

N = N-1; n = n-1;

cauchy = 0;

end

if n==2

tmp = roots([DU(1) DU(2) DU(3)]);

z(1) = tmp(1);

z(2) = tmp(2);

else

if n==1

z(1) = -DU(2)/DU(1);

else

R = Inf;

end

end

z = z(:);

A.2 mc02afy.m

function [defl,pz,p1z,p2z,error] = mc02afy(p,dx);

%Evaluate a polynomial, its first derivative

%and half of its second derivatives at a point.

%Compute error in polynomial value at point.

%

n = length(p) - 1;

deps = 1.11e-16;

absx = abs(dx);

defl = zeros(1,length(p));

dv = p(1);

w = 0;
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defl(1) = p(1);

defl(2) = p(2) + dx*defl(1);

for i=3:n+1

w = dv + dx*w;

dv = defl(i-1) + dx*dv;

defl(i) = p(i) + dx*defl(i-1);

end

error = (2/3)*abs(p(1));

for i = 2:n+1

error = abs(defl(i)) + absx*error;

end

error = 16*deps*abs(defl(n+1))+3*absx*error;

pz = polyval(p, dx);

df = (n:-1:1).*p(1:end-1);

d2f = (n-1:-1:1).*df(1:end-1);

p1z = polyval(df, dx);

p2z = 0.5*polyval(d2f,dx);
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Appendix B

Codes for testing C02AFF

These are some of the codes we used to test C02AFF.

B.1 Reported bugs.

This is code was obtained from NAG and contains programs that were reported for faulty behaviour for
both C02AGF and C02AFF.

* reported_bugs.f

PROGRAM TEST

C .. External Subroutines ..

EXTERNAL EX1, EX10, EX11, EX12, EX13, EX14, EX15, EX16,

* EX17, EX18, EX19, EX2, EX3, EX4, EX5, EX6, EX7,

* EX8, EX9

C .. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

C .. Local Scalars ..

INTEGER PROBNO

C .. Executable Statements ..

20 WRITE (NOUT,FMT=*)

* ’Choose a problem betwen 1 and 19. Type 0 to stop.’

READ (NIN,FMT=*) PROBNO

IF (PROBNO.EQ.1) THEN

CALL EX1

ELSE IF (PROBNO.EQ.2) THEN

CALL EX2

ELSE IF (PROBNO.EQ.3) THEN

CALL EX3

ELSE IF (PROBNO.EQ.4) THEN

CALL EX4

ELSE IF (PROBNO.EQ.5) THEN

CALL EX5

ELSE IF (PROBNO.EQ.6) THEN

CALL EX6

ELSE IF (PROBNO.EQ.7) THEN

CALL EX7

ELSE IF (PROBNO.EQ.8) THEN

CALL EX8

ELSE IF (PROBNO.EQ.9) THEN

CALL EX9

ELSE IF (PROBNO.EQ.10) THEN

CALL EX10
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ELSE IF (PROBNO.EQ.11) THEN

CALL EX11

ELSE IF (PROBNO.EQ.12) THEN

CALL EX12

ELSE IF (PROBNO.EQ.13) THEN

CALL EX13

ELSE IF (PROBNO.EQ.14) THEN

CALL EX14

ELSE IF (PROBNO.EQ.15) THEN

CALL EX15

ELSE IF (PROBNO.EQ.16) THEN

CALL EX16

ELSE IF (PROBNO.EQ.17) THEN

CALL EX17

ELSE IF (PROBNO.EQ.18) THEN

CALL EX18

ELSE IF (PROBNO.EQ.19) THEN

CALL EX19

ELSE

STOP

END IF

GO TO 20

*

END

*

SUBROUTINE EX1

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,9), TEMP(8), W(36), ZR(2,8)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

EXTERNAL C02AFF

C .. Data statements ..

C ===============================

C DAVID ALLWRIGHT - PROBLEM NO. 1

C ===============================

DATA A/1.D0, 0.D0, 3.048D0, -0.7038D0, 12.31D0,

* -5.661D0, 24.26D0, -23.93D0, 44.54D0, -76.69D0,

* 25.68D0, -180.3D0, 13.20D0, -348.3D0, -96.07D0,

* -398.5D0, -206.0D0, -531.8D0/

C .. Executable Statements ..

N = 8

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, 8

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,8)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

C

34



SUBROUTINE EX2

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,9), TEMP(8), W(36), ZR(2,8)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

EXTERNAL C02AFF

C .. Data statements ..

C ===============================

C DAVID ALLWRIGHT - PROBLEM NO. 2

C ===============================

DATA A/1.D0, 0.D0, -0.422D0, 0.158D0, 0.335D0,

* -0.109D0, -0.117D0, 0.0576D0, 6.9711D0,

* -0.03083D0, -8.0434D0, 1.105057D0, 0.475D0,

* -2.004112D0, -0.46545D0, 0.180345D0, -0.024512D0,

* -0.12094D0/

C .. Executable Statements ..

N = 8

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, 8

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,8)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX3

*

* Program to illustrate a bug in C02AGF reported by D. Allwright,

* Cambridge Computer Laboratory, 16-October-1991.

*

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(0:3), W(8), Z(2,3)

C .. External Subroutines ..

EXTERNAL C02AGF

C .. Executable Statements ..

* CALL A00AAF

*

A(0) = 0.10000000000000000000D+01

A(1) = 0.62479757587255957407D+00

A(2) = 0.13012400360540585242D+00

A(3) = 0.90334624461698726644D-02

N = 3

IFAIL = -1

*

CALL C02AGF(A,N,.TRUE.,Z,W,IFAIL)

*

WRITE (6,FMT=*) ’C02AGF: SCALE = .TRUE. : IFAIL = ’, IFAIL
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WRITE (6,FMT=99999) (Z(1,I),Z(2,I),I=1,N)

IFAIL = -1

*

CALL C02AGF(A,N,.FALSE.,Z,W,IFAIL)

*

WRITE (6,FMT=*) ’C02AGF: SCALE = .FALSE. : IFAIL = ’, IFAIL

WRITE (6,FMT=99999) (Z(1,I),Z(2,I),I=1,N)

*

99999 FORMAT (2D16.8)

END

*

SUBROUTINE EX4

*

* Test program supplied by David Allwright 2-July-1992.

*

C .. Local Scalars ..

DOUBLE PRECISION A, B

INTEGER IA, IA0, IA1, IB, IB0, IB1, IFAIL, IJK, NC

C .. Local Arrays ..

DOUBLE PRECISION ACO(0:6), WORK(14), Z(2,6)

C .. External Subroutines ..

EXTERNAL C02AGF

C .. Intrinsic Functions ..

INTRINSIC DBLE, REAL

C .. Executable Statements ..

IA0 = 1

IA1 = 256

IB0 = -256

IB1 = 256

* WRITE (*,*) ’IA0,IA1,IB0,IB1 ?’

* READ (*,*) IA0, IA1, IB0, IB1

NC = (IA1-IA0+1)*(IB1-IB0+1)

IJK = 0

DO 40 IA = IA0, IA1

A = DBLE(IA)

DO 20 IB = IB0, IB1

B = DBLE(IB)

ACO(0) = 1.D0

ACO(1) = 3.D0*A

ACO(2) = 3.D0*(A**2+B)

ACO(3) = A*(A**2+6.D0*B)

ACO(4) = B*ACO(2)

ACO(5) = ACO(1)*B**2

ACO(6) = B**3

IFAIL = 1

*

CALL C02AGF(ACO,6,.TRUE.,Z,WORK,IFAIL)

*

IF (IFAIL.EQ.0) IJK = IJK + 1

20 CONTINUE

40 CONTINUE

WRITE (*,FMT=99999) ’ C02AGF solves ’, IJK, ’ problems out of ’,

* NC, ’ ( = ’, 100.0*REAL(IJK)/REAL(NC), ’ %)’

*

99999 FORMAT (A,I8,A,I8,A,F5.1,A)

END

*

SUBROUTINE EX5

C .. Local Scalars ..
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INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,4), TEMP(3), W(16), ZR(2,4)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

EXTERNAL C02AFF

C .. Data statements ..

C ===============================

C DAVID ALLWRIGHT - PROBLEM NO. 5

C ===============================

DATA A/1.0D0, 0.0D0, -0.2265061220743257D+01,

* -0.8876934120839897D+00, 0.1640518549907148D+01,

* 0.1657501114089819D+01, -0.2499153712796033D+00,

* -0.7456147554629142D+00/

C .. Executable Statements ..

N = 3

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX6

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,23), TEMP(23), W(92), ZR(2,22)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

EXTERNAL C02AFF

C .. Data statements ..

C ===============================

C ANDY LAM - PROBLEM NO. 1

C ===============================

DATA A(1,1), A(2,1)/1.0D0, 0.0D0/

DATA A(1,2), A(2,2)/6.692848309097203D-02,

* -1.066815130745114D-02/

DATA A(1,3), A(2,3)/-7.086518965761863D-02,

* 2.230960516166786D-02/

DATA A(1,4), A(2,4)/6.303294768752449D-02,

* -3.031411710233499D-02/

DATA A(1,5), A(2,5)/-5.148428562317170D-02,

* 3.552615504729231D-02/

DATA A(1,6), A(2,6)/3.423188895476926D-02,

* -3.495326989239094D-02/

DATA A(1,7), A(2,7)/-2.282316337587525D-02,

* 3.089446038231147D-02/
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DATA A(1,8), A(2,8)/1.043284095744426D-02,

* -2.526122727713401D-02/

DATA A(1,9), A(2,9)/-3.207698906589943D-03,

* 1.618302686284827D-02/

DATA A(1,10), A(2,10)/-5.410782528762875D-03,

* -4.184080580933460D-03/

DATA A(1,11), A(2,11)/-1.082608426110527D-03,

* -6.433079945966239D-03/

DATA A(1,12), A(2,12)/2.140987191276102D-03,

* 1.807538373240856D-02/

DATA A(1,13), A(2,13)/-1.211010060428513D-02,

* -2.698206652012696D-02/

DATA A(1,14), A(2,14)/1.446411522717839D-02,

* 3.518316442419946D-02/

DATA A(1,15), A(2,15)/-2.790265151409987D-02,

* -3.939162263019953D-02/

DATA A(1,16), A(2,16)/3.769131566749238D-02,

* 4.025718875500140D-02/

DATA A(1,17), A(2,17)/-5.213611832843504D-02,

* -3.657153266401287D-02/

DATA A(1,18), A(2,18)/6.318369421581575D-02,

* 3.077611824152049D-02/

DATA A(1,19), A(2,19)/-7.735627110673225D-02,

* -2.059571828298433D-02/

DATA A(1,20), A(2,20)/7.945490302665662D-02,

* 9.238282766534648D-03/

DATA A(1,21), A(2,21)/-7.798948625689881D-02,

* 2.692352710187064D-03/

DATA A(1,22), A(2,22)/6.538705609654054D-02,

* -1.231778873447496D-02/

DATA A(1,23), A(2,23)/-5.832573500768336D-02,

* 2.118306322814731D-02/

C .. Executable Statements ..

* CALL A00AAF

N = 22

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL, (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (’ IFAIL=’,I4,8(/I4,3D16.7))

END

*

SUBROUTINE EX7

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,23), TEMP(23), W(92), ZR(2,22)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

EXTERNAL C02AFF

C .. Data statements ..

C ===============================

C ANDY LAM - PROBLEM NO. 2

C ===============================
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DATA A(1,1), A(2,1)/1.0D0, 0.0D0/

DATA A(1,2), A(2,2)/6.709008051116012D-02,

* -1.105667830526196D-02/

DATA A(1,3), A(2,3)/-6.711247568226415D-02,

* 2.327404711680193D-02/

DATA A(1,4), A(2,4)/6.086150080218387D-02,

* -3.166060949647874D-02/

DATA A(1,5), A(2,5)/-4.746169484011257D-02,

* 3.643474248477278D-02/

DATA A(1,6), A(2,6)/3.239700122706570D-02,

* -3.667555858748441D-02/

DATA A(1,7), A(2,7)/-2.309093492605298D-02,

* 3.243568747240444D-02/

DATA A(1,8), A(2,8)/8.225779627381511D-03,

* -2.665012539426458D-02/

DATA A(1,9), A(2,9)/-5.955953037094856D-03,

* 1.733181018550921D-02/

DATA A(1,10), A(2,10)/-5.051006621539410D-03,

* -4.946482861095421D-03/

DATA A(1,11), A(2,11)/-4.994821509480170D-03,

* -4.918252056948132D-03/

DATA A(1,12), A(2,12)/-2.661039956662787D-05,

* 1.856654584803523D-02/

DATA A(1,13), A(2,13)/-1.605587605278142D-02,

* -2.721643640191550D-02/

DATA A(1,14), A(2,14)/1.431026334885683D-02,

* 3.588511356628187D-02/

DATA A(1,15), A(2,15)/-3.083505326912570D-02,

* -3.984473771114714D-02/

DATA A(1,16), A(2,16)/3.717926367237125D-02,

* 4.194406205981662D-02/

DATA A(1,17), A(2,17)/-5.397677423606877D-02,

* -3.711836065175791D-02/

DATA A(1,18), A(2,18)/6.318584679761217D-02,

* 3.222471177787703D-02/

DATA A(1,19), A(2,19)/-7.489069732708209D-02,

* -2.163460421216798D-02/

DATA A(1,20), A(2,20)/7.931128414218512D-02,

* 9.766520016847981D-03/

DATA A(1,21), A(2,21)/-7.628032879105192D-02,

* 1.939202993846361D-03/

DATA A(1,22), A(2,22)/6.557098208202312D-02,

* -1.327846589866429D-02/

DATA A(1,23), A(2,23)/-5.717600020339203D-02,

* 2.208546380737488D-02/

C .. Executable Statements ..

* CALL A00AAF

N = 22

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL, (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (’ IFAIL=’,I4,8(/I4,3D16.7))

END

*

SUBROUTINE EX8
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C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,23), TEMP(23), W(92), ZR(2,22)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

EXTERNAL C02AFF

C .. Data statements ..

C ===============================

C ANDY LAM - PROBLEM NO. 3

C ===============================

DATA A(1,1), A(2,1)/1.0D0, 0.0D0/

DATA A(1,2), A(2,2)/7.299717662709504D-02,

* -1.251603085718758D-02/

DATA A(1,3), A(2,3)/-6.692829479084827D-02,

* 2.554480198192204D-02/

DATA A(1,4), A(2,4)/5.813406400365923D-02,

* -3.435329359739291D-02/

DATA A(1,5), A(2,5)/-4.661340524475002D-02,

* 3.897400500670847D-02/

DATA A(1,6), A(2,6)/3.189537465131881D-02,

* -3.971463209682351D-02/

DATA A(1,7), A(2,7)/-2.347222022450406D-02,

* 3.541977449538532D-02/

DATA A(1,8), A(2,8)/6.386012638991536D-03,

* -2.817337272458770D-02/

DATA A(1,9), A(2,9)/-9.247442901437751D-03,

* 1.829678170485129D-02/

DATA A(1,10), A(2,10)/-3.181724350590678D-03,

* -5.210472267566396D-03/

DATA A(1,11), A(2,11)/-4.042882525153831D-03,

* -5.545338123709728D-03/

DATA A(1,12), A(2,12)/-5.079281944515824D-03,

* 2.269768910343822D-02/

DATA A(1,13), A(2,13)/-1.689026749663972D-02,

* -3.271918287492030D-02/

DATA A(1,14), A(2,14)/1.873875002862358D-02,

* 4.090417193682402D-02/

DATA A(1,15), A(2,15)/-3.621946498825187D-02,

* -4.446562197952801D-02/

DATA A(1,16), A(2,16)/3.807037929920166D-02,

* 4.726608485426496D-02/

DATA A(1,17), A(2,17)/-5.711044814259666D-02,

* -4.258180109493363D-02/

DATA A(1,18), A(2,18)/6.493499815683595D-02,

* 3.685503603526334D-02/

DATA A(1,19), A(2,19)/-7.687055250545507D-02,

* -2.492035912034419D-02/

DATA A(1,20), A(2,20)/7.995516520303647D-02,

* 1.310209904630223D-02/

DATA A(1,21), A(2,21)/-7.856518559290735D-02,

* 7.930764827738515D-04/

DATA A(1,22), A(2,22)/7.124482367933885D-02,

* -1.456490551167847D-02/

DATA A(1,23), A(2,23)/-6.234466635505629D-02,

* 2.467891415118185D-02/

C .. Executable Statements ..
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* CALL A00AAF

N = 22

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL, (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (’ IFAIL=’,I4,8(/I4,3D16.7))

END

*

SUBROUTINE EX9

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,23), TEMP(23), W(92), ZR(2,22)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

EXTERNAL C02AFF

C .. Data statements ..

C ===============================

C ANDY LAM - PROBLEM NO. 4

C ===============================

DATA A(1,1), A(2,1)/1.0D0, 0.0D0/

DATA A(1,2), A(2,2)/8.826547101919578D-02,

* -1.414081968118106D-02/

DATA A(1,3), A(2,3)/-7.626459818385396D-02,

* 2.842270278133602D-02/

DATA A(1,4), A(2,4)/6.007807422271309D-02,

* -3.632306063903809D-02/

DATA A(1,5), A(2,5)/-4.931801747112107D-02,

* 4.124866238616326D-02/

DATA A(1,6), A(2,6)/3.460912384784597D-02,

* -4.376586918299159D-02/

DATA A(1,7), A(2,7)/-2.774769547328051D-02,

* 3.982435937329466D-02/

DATA A(1,8), A(2,8)/9.623668578675439D-03,

* -3.303223147036237D-02/

DATA A(1,9), A(2,9)/-1.492626590194510D-02,

* 2.330373745030098D-02/

DATA A(1,10), A(2,10)/1.008979443592338D-03,

* -9.117106753497844D-03/

DATA A(1,11), A(2,11)/-7.390370723224149D-03,

* -2.310499485959538D-03/

DATA A(1,12), A(2,12)/-2.880503997552897D-03,

* 2.152375196652239D-02/

DATA A(1,13), A(2,13)/-2.123062733513988D-02,

* -3.340448218406404D-02/

DATA A(1,14), A(2,14)/2.385860078578356D-02,

* 4.199245958636058D-02/

DATA A(1,15), A(2,15)/-4.132064378044115D-02,

* -4.730288951651626D-02/

DATA A(1,16), A(2,16)/4.040909544333124D-02,

* 5.103048140306666D-02/

DATA A(1,17), A(2,17)/-6.018355316422513D-02,

* -4.702958063167249D-02/
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DATA A(1,18), A(2,18)/6.626630190380043D-02,

* 4.170523573778244D-02/

DATA A(1,19), A(2,19)/-7.856296020873610D-02,

* -2.915845194741102D-02/

DATA A(1,20), A(2,20)/8.344257422934534D-02,

* 1.794841118976563D-02/

DATA A(1,21), A(2,21)/-9.211228910190803D-02,

* -2.317303532165138D-03/

DATA A(1,22), A(2,22)/9.023511232887800D-02,

* -1.466465308674939D-02/

DATA A(1,23), A(2,23)/-8.241393803805482D-02,

* 2.732938335090737D-02/

C .. Executable Statements ..

N = 22

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX10

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,15), TEMP(14), W(60), ZR(2,14)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

EXTERNAL C02AFF

C .. Data statements ..

C ===============================

C RICHARD MARTIN - PROBLEM NO. 1

C ===============================

DATA A(1,1), A(2,1)/1.0D0, 0.0D0/

DATA A(1,2), A(2,2)/-0.218929D0, -0.111694D0/

DATA A(1,3), A(2,3)/-0.041137D0, 0.053219D0/

DATA A(1,4), A(2,4)/0.039693D0, -0.133413D0/

DATA A(1,5), A(2,5)/0.023298D0, 0.010632D0/

DATA A(1,6), A(2,6)/0.027063D0, -0.076606D0/

DATA A(1,7), A(2,7)/0.100735D0, -0.021368D0/

DATA A(1,8), A(2,8)/0.071725D0, -0.109003D0/

DATA A(1,9), A(2,9)/-0.152468D0, -0.017280D0/

DATA A(1,10), A(2,10)/0.044497D0, 0.110741D0/

DATA A(1,11), A(2,11)/-0.050943D0, 0.189754D0/

DATA A(1,12), A(2,12)/-0.038635D0, 0.111387D0/

DATA A(1,13), A(2,13)/0.017052D0, 0.062966D0/

DATA A(1,14), A(2,14)/0.078129D0, -0.026399D0/

DATA A(1,15), A(2,15)/-0.039685D0, -0.085970D0/

C .. Executable Statements ..

* CALL A00AAF
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N = 14

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL, (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (’ IFAIL=’,I4,8(/I4,3D16.7))

END

*

SUBROUTINE EX11

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,31), TEMP(30), W(124), ZR(2,30)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

EXTERNAL C02AFF

C .. Data statements ..

C ===============================

C RICHARD MARTIN - PROBLEM NO. 2

C ===============================

DATA A(1,1), A(2,1)/1.0D0, 0.0D0/

DATA A(1,2), A(2,2)/-0.156071D0, -0.279968D0/

DATA A(1,3), A(2,3)/0.047664D0, 0.029149D0/

DATA A(1,4), A(2,4)/0.029474D0, -0.033720D0/

DATA A(1,5), A(2,5)/0.036454D0, -0.063001D0/

DATA A(1,6), A(2,6)/0.058110D0, -0.038271D0/

DATA A(1,7), A(2,7)/-0.024418D0, -0.095898D0/

DATA A(1,8), A(2,8)/-0.040911D0, 0.018213D0/

DATA A(1,9), A(2,9)/0.107986D0, -0.012112D0/

DATA A(1,10), A(2,10)/-0.006122D0, 0.064808D0/

DATA A(1,11), A(2,11)/-0.058241D0, -0.037196D0/

DATA A(1,12), A(2,12)/-0.019662D0, 0.169759D0/

DATA A(1,13), A(2,13)/0.096323D0, 0.063821D0/

DATA A(1,14), A(2,14)/0.035896D0, -0.082558D0/

DATA A(1,15), A(2,15)/0.000140D0, -0.011630D0/

DATA A(1,16), A(2,16)/-0.060371D0, -0.034804D0/

DATA A(1,17), A(2,17)/0.052805D0, -0.021240D0/

DATA A(1,18), A(2,18)/-0.050982D0, 0.030380D0/

DATA A(1,19), A(2,19)/0.041200D0, -0.006258D0/

DATA A(1,20), A(2,20)/0.015683D0, 0.047790D0/

DATA A(1,21), A(2,21)/-0.013689D0, 0.003451D0/

DATA A(1,22), A(2,22)/-0.023622D0, -0.001976D0/

DATA A(1,23), A(2,23)/-0.011090D0, -0.061840D0/

DATA A(1,24), A(2,24)/-0.015088D0, -0.017227D0/

DATA A(1,25), A(2,25)/-0.037730D0, -0.056518D0/

DATA A(1,26), A(2,26)/-0.011623D0, 0.019046D0/

DATA A(1,27), A(2,27)/0.074670D0, -0.059399D0/

DATA A(1,28), A(2,28)/0.026980D0, -0.064669D0/

DATA A(1,29), A(2,29)/0.003525D0, -0.004874D0/

DATA A(1,30), A(2,30)/0.002332D0, 0.035928D0/

DATA A(1,31), A(2,31)/0.038520D0, 0.027903D0/

C .. Executable Statements ..

* CALL A00AAF

N = 30
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IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL, (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (’ IFAIL=’,I4,8(/I4,3D16.7))

END

*

SUBROUTINE EX12

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,0:3), TEMP(4), W(16), ZR(2,3)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

C ================================

C REBECCA WOODGATE - PROBLEM NO. 1

C ================================

EXTERNAL C02AFF

C .. Executable Statements ..

A(1,0) = 1.0D0

A(2,0) = 0.0D0

A(1,1) = 0.0D0

A(2,1) = -1.8666666746139526D-03

A(1,2) = -3.0533967190711987D-07

A(2,2) = 0.0D0

A(1,3) = 0.0D0

A(2,3) = 9.9260125411118432D-12

N = 3

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX13

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,0:3), TEMP(4), W(16), ZR(2,3)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

C ================================

C REBECCA WOODGATE - PROBLEM NO. 2

C ================================
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EXTERNAL C02AFF

C .. Executable Statements ..

A(1,0) = 1.0D0

A(2,0) = 0.0D0

A(1,1) = 0.0D0

A(2,1) = -1.9333332777023315D-03

A(1,2) = -3.0533967190711987D-07

A(2,2) = 0.0D0

A(1,3) = 0.0D0

A(2,3) = 1.0280512649421447D-11

N = 3

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX14

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,0:3), TEMP(4), W(16), ZR(2,3)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

C ================================

C REBECCA WOODGATE - PROBLEM NO. 3

C ================================

EXTERNAL C02AFF

C .. Executable Statements ..

A(1,0) = 1.0D0

A(2,0) = 0.0D0

A(1,1) = 0.0D0

A(2,1) = -2.0000000794728597D-03

A(1,2) = -3.0533967190711987D-07

A(2,2) = 0.0D0

A(1,3) = 0.0D0

A(2,3) = 1.0635013814224710D-11

N = 3

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)
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99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX15

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,0:3), TEMP(4), W(16), ZR(2,3)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

C ================================

C REBECCA WOODGATE - PROBLEM NO. 4

C ================================

EXTERNAL C02AFF

C .. Executable Statements ..

A(1,0) = 1.0D0

A(2,0) = 0.0D0

A(1,1) = 0.0D0

A(2,1) = -2.0666666825612386D-03

A(1,2) = -3.0533967190711987D-07

A(2,2) = 0.0D0

A(1,3) = 0.0D0

A(2,3) = 1.0989513922534314D-11

N = 3

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX16

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,0:3), TEMP(4), W(16), ZR(2,3)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

C ================================

C REBECCA WOODGATE - PROBLEM NO. 5

C ================================

EXTERNAL C02AFF

C .. Executable Statements ..

A(1,0) = 1.0D0

A(2,0) = 0.0D0

A(1,1) = 0.0D0

A(2,1) = -2.1333332856496175D-03

A(1,2) = -3.0533967190711987D-07
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A(2,2) = 0.0D0

A(1,3) = 0.0D0

A(2,3) = 1.1344014030843918D-11

N = 3

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX17

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,0:3), TEMP(4), W(16), ZR(2,3)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

C ================================

C REBECCA WOODGATE - PROBLEM NO. 6

C ================================

EXTERNAL C02AFF

C .. Executable Statements ..

A(1,0) = 1.0D0

A(2,0) = 0.0D0

A(1,1) = 0.0D0

A(2,1) = -2.2000000874201457D-03

A(1,2) = -3.0533967190711987D-07

A(2,2) = 0.0D0

A(1,3) = 0.0D0

A(2,3) = 1.1698515195647182D-11

N = 3

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX18

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..
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DOUBLE PRECISION A(2,0:3), TEMP(4), W(16), ZR(2,3)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

C ================================

C REBECCA WOODGATE - PROBLEM NO. 7

C ================================

EXTERNAL C02AFF

C .. Executable Statements ..

A(1,0) = 1.0D0

A(2,0) = 0.0D0

A(1,1) = 0.0D0

A(2,1) = -2.2666666905085246D-03

A(1,2) = -3.0533967190711987D-07

A(2,2) = 0.0D0

A(1,3) = 0.0D0

A(2,3) = 1.2053015303956785D-11

N = 3

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

*

SUBROUTINE EX19

C .. Local Scalars ..

INTEGER I, IFAIL, N

C .. Local Arrays ..

DOUBLE PRECISION A(2,0:6), TEMP(7), W(28), ZR(2,6)

C .. External Functions ..

DOUBLE PRECISION A02ABF

EXTERNAL A02ABF

C .. External Subroutines ..

C ===============================

C MICK PONT - PROBLEM NO. 1

C ===============================

EXTERNAL C02AFF

C .. Executable Statements ..

A(1,0) = -0.398190494797642726E-03

A(2,0) = -0.161643423352597184E-07

A(1,1) = -0.630376995875508411E-06

A(2,1) = 0.679099861801233350E-02

A(1,2) = 67.8310871970592331

A(2,2) = 165.126753751424388

A(1,3) = 2817.40134554712040

A(2,3) = 7138.34496623663836

A(1,4) = 414240453.644594848

A(2,4) = -163541673.279697359

A(1,5) = -942898.168914408656

A(2,5) = -2198324.83847518219
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A(1,6) = -12567222073.7342663

A(2,6) = 4961096774.84005356

N = 6

IFAIL = -1

CALL C02AFF(A,N,.TRUE.,ZR,W,IFAIL)

DO 20 I = 1, N

TEMP(I) = A02ABF(ZR(1,I),ZR(2,I))

20 CONTINUE

WRITE (6,FMT=99999) IFAIL

WRITE (6,FMT=99998)

WRITE (6,FMT=99997) (I,ZR(1,I),ZR(2,I),TEMP(I),I=1,N)

C

99999 FORMAT (/’ C02AFF terminated with IFAIL = ’,I4)

99998 FORMAT (/’ real part imag part modulus’)

99997 FORMAT (8(/I4,3D16.7))

END

B.2 NAG Zerofinder Test and Expected Results

Tests similar to those described in section 3.3 used to test NAG zerofinders.

B.2.1 Expected Results

Zeros Degree

01 6.70088− 7.87599i,39.7767 + 42.99567i,−7.47753 + 6.88032i 3
02 1 + 5i, 2 + 6i, 3 + 7i, 4 + 8i 4
03 127.38667077303 + 132.27820320006i,7.07331324882− 9.55838903704i,

−9.45998402189 + 7.28018583692i,0, 0 5
04 4.16174868 + 3.13751356i,5.43644837− 3.97142582i,2.38988759

+7.26807071i,−1.93520144− 3.97509382i,−2.44755082 + 0.437126175i,
−5.27950616− 2.27596303i,1.03205812 + 9.29413278i,−4.96687009
−8.08712475i,8.81130928 + 1.54938266i,10.7976764 + 8.62338151i 10

05 0.5± 0.5i,−0.5− 0.5i, 0.3,−2, i,−0.7i,−0.7i 8
06 0.0001i, i, 10000i 3

07 2−k(1 + i), for k = 0, 1, . . . , 9 10
08 4i, 3, 3, 2i, 2i, 2i, 1, 1, 1, 1 10
09 i, 3i, 1 + 2i,−1 + 2i,−0.5 + 2.866025i,−0.5 + 2.866025i,−0.866025 + 2.5i,

0.866025 + 2.5i,−0.866025 + 1.5i, 0.866025 + 1.5i,−0.5 + 1.133974i,0.5 + 1.133974i 12
10 i,−1, 2i,−2, 3i,−3, 4i,−4, 5i,−5 10
11 i, 2, 3i, 4, 5i, 6, 7i, 8, 9i, 10 10
12 2i, 1 + i, 2,−4i, 2 + 2i, 4, 9i,−3− 3i,−9,−4 + 4i,−16i, 16, 5− 5i, 25i,−25 15
13 1 + i, 2,−2 + 2i, 4, 3− 3i,−9, 4 + 4i,−16,−5− 5i, 25 10
14 1, 1, 1, i, i, i 6
15 1 + i, 1 + i, 1 + i,−1 + i,−1 + i,−1 + i, 2i,−2i, 2,−2 10
16 i,−2, 4i,−8, 16i,−32, 64i,−128, 256i,−512 10
17 i,±1, 2i,±2, 3i,±3, 4i,±4, 5i,±5, 6i,±6, 7i,±7, 8i,±8 24
18 100 + 101i, 101 + 100i, 99 + 100i, 100 + 99i 4
19 1000 + 1001i, 1001 + 1000i, 999 + 1000i, 1000 + 999i 4
20 10000 + 10001i,10001 + 10000i, 9999 + 10000i, 10000 + 9999i 4

B.2.2 Results obtained

These are the results we obtained with (the modified) C02AFF.

Computed zeros of problem 1

Z = 3.9776654832D+01 +4.2995667678D+01*i

Z = 6.7008755006D+00 -7.8759889549D+00*i

Z = -7.4775303323D+00 +6.8803212771D+00*i
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Computed zeros of problem 2

Z = 4.0000000000D+00 +8.0000000000D+00*i

Z = 3.0000000000D+00 +7.0000000000D+00*i

Z = 2.0000000000D+00 +6.0000000000D+00*i

Z = 1.0000000000D+00 +5.0000000000D+00*i

Computed zeros of problem 3

Z = 1.2738667077D+02 +1.3227820320D+02*i

Z = -9.4599840219D+00 +7.2801858369D+00*i

Z = 7.0733132488D+00 -9.5583890370D+00*i

Z = 0.0000000000D+00 +0.0000000000D+00*i

Z = 0.0000000000D+00 +0.0000000000D+00*i

Computed zeros of problem 4

Z = 1.0797676451D+01 +8.6233815278D+00*i

Z = -4.9668700867D+00 -8.0871247716D+00*i

Z = 1.0320581252D+00 +9.2941327979D+00*i

Z = 5.4364483814D+00 -3.9714258232D+00*i

Z = -5.2795061629D+00 -2.2759630350D+00*i

Z = 8.8113092846D+00 +1.5493826626D+00*i

Z = 2.3898875901D+00 +7.2680707177D+00*i

Z = -1.9352014504D+00 -3.9750938123D+00*i

Z = 4.1617486920D+00 +3.1375135599D+00*i

Z = -2.4475508238D+00 +4.3712617612D-01*i

Computed zeros of problem 5

Z = -2.0000000000D+00 +5.5511151231D-17*i

Z = 8.3266726847D-17 +1.0000000000D+00*i

Z = 5.0000000000D-01 -5.0000000000D-01*i

Z = -5.0000000000D-01 -5.0000000000D-01*i

Z = 5.0000000000D-01 +5.0000000000D-01*i

Z = -9.3900718813D-09 -7.0000004368D-01*i

Z = 9.3900745403D-09 -6.9999995632D-01*i

Z = 3.0000000000D-01 -5.6303759003D-17*i

Computed zeros of problem 6

Z = 0.0000000000D+00 +1.0000000000D+04*i

Z = 0.0000000000D+00 +1.0000000000D+00*i

Z = 0.0000000000D+00 +1.0000000000D-04*i

Computed zeros of problem 7

Z = 1.0000000000D+00 +1.0000000000D+00*i

Z = 5.0000000000D-01 +5.0000000000D-01*i

Z = 2.5000000000D-01 +2.5000000000D-01*i

Z = 1.2500000000D-01 +1.2500000000D-01*i

Z = 6.2500000000D-02 +6.2500000000D-02*i

Z = 3.1250000000D-02 +3.1250000000D-02*i

Z = 1.5625000000D-02 +1.5625000000D-02*i

Z = 7.8125000000D-03 +7.8125000000D-03*i

Z = 3.9062500000D-03 +3.9062500000D-03*i

Z = 1.9531250000D-03 +1.9531250000D-03*i

Computed zeros of problem 8

Z = 1.1324274851D-14 +4.0000000000D+00*i

Z = 3.0000001960D+00 +1.1368287073D-07*i

Z = 2.9999998040D+00 -1.1368287765D-07*i

Z = 5.3703239359D-05 +1.9999957764D+00*i

Z = -2.3194686893D-05 +2.0000486193D+00*i

Z = -3.0508552446D-05 +1.9999556043D+00*i

Z = 1.0004206636D+00 +1.8029891200D-04*i

Z = 9.9981958578D-01 +4.2063962886D-04*i

Z = 1.0001802750D+00 -4.2054834104D-04*i

Z = 9.9957947564D-01 -1.8039019982D-04*i

Computed zeros of problem 9

Z = 1.7090280302D-09 +2.9999999997D+00*i
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Z = 5.0000000091D-01 +2.8660254024D+00*i

Z = 8.6602540354D-01 +2.4999999986D+00*i

Z = 9.9999999904D-01 +1.9999999993D+00*i

Z = 4.9999999974D-01 +1.1339745966D+00*i

Z = -5.0000000036D-01 +1.1339745960D+00*i

Z = -4.9999999857D-01 +2.8660254048D+00*i

Z = -8.6602540356D-01 +2.5000000015D+00*i

Z = 8.6602540294D-01 +1.5000000001D+00*i

Z = -8.6602540464D-01 +1.5000000001D+00*i

Z = -1.0000000008D+00 +2.0000000010D+00*i

Z = 0.0000000000D+00 +1.0000000000D+00*i

Computed zeros of problem 10

Z = -5.0000000000D+00 -2.1760371283D-14*i

Z = 3.2418512319D-14 +5.0000000000D+00*i

Z = -4.9521716856D-14 +4.0000000000D+00*i

Z = -4.0000000000D+00 +1.2486606750D-15*i

Z = 1.0972541550D-14 +3.0000000000D+00*i

Z = -3.0000000000D+00 +7.4178411136D-15*i

Z = -2.0000000000D+00 +1.9644054850D-14*i

Z = -6.5452075484D-15 +2.0000000000D+00*i

Z = -1.0000000000D+00 -3.5959920331D-15*i

Z = 8.3054455040D-16 +1.0000000000D+00*i

Computed zeros of problem 11

Z = 1.0000000000D+01 +4.5297099405D-14*i

Z = -1.4654943925D-14 +9.0000000000D+00*i

Z = 8.0000000000D+00 -1.3756819988D-13*i

Z = -2.0822796674D-14 +7.0000000000D+00*i

Z = 6.0000000000D+00 -1.2194275024D-14*i

Z = -4.7942654422D-14 +5.0000000000D+00*i

Z = 4.0000000000D+00 +1.8113580580D-13*i

Z = 1.4949395447D-13 +3.0000000000D+00*i

Z = 2.0000000000D+00 -1.6477410273D-15*i

Z = -1.3505218387D-16 +1.0000000000D+00*i

Computed zeros of problem 12

Z = -3.5527136788D-15 +2.5000000000D+01*i

Z = -2.5000000000D+01 -9.9475983006D-16*i

Z = 1.6000000000D+01 -7.7502705958D-16*i

Z = 3.4117693022D-16 -1.6000000000D+01*i

Z = -2.4635877038D-15 +9.0000000000D+00*i

Z = -9.0000000000D+00 +1.6366603938D-15*i

Z = 5.0000000000D+00 -5.0000000000D+00*i

Z = -4.0000000000D+00 +4.0000000000D+00*i

Z = 4.0000000000D+00 -1.2197473493D-15*i

Z = 4.4482002307D-16 -4.0000000000D+00*i

Z = -3.0000000000D+00 -3.0000000000D+00*i

Z = 2.0000000000D+00 -1.6930706308D-16*i

Z = 2.0850181768D-16 +2.0000000000D+00*i

Z = 2.0000000000D+00 +2.0000000000D+00*i

Z = 1.0000000000D+00 +1.0000000000D+00*i

Computed zeros of problem 13

Z = 2.5000000000D+01 +2.1726602663D-16*i

Z = -1.6000000000D+01 -5.9418207868D-16*i

Z = -9.0000000000D+00 +8.3705218294D-15*i

Z = 4.0000000000D+00 +4.0000000000D+00*i

Z = -5.0000000000D+00 -5.0000000000D+00*i

Z = 3.0000000000D+00 -3.0000000000D+00*i

Z = 4.0000000000D+00 -4.9878585949D-16*i

Z = -2.0000000000D+00 +2.0000000000D+00*i

Z = 2.0000000000D+00 +6.0817002009D-17*i
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Z = 1.0000000000D+00 +1.0000000000D+00*i

Computed zeros of problem 14

Z = 1.0000209421D+00 -5.5558006137D-06*i

Z = -3.3496004290D-06 +1.0000134206D+00*i

Z = 9.9999434034D-01 +2.0914577946D-05*i

Z = 1.3297250819D-05 +9.9999619060D-01*i

Z = 9.9998471759D-01 -1.5358777325D-05*i

Z = -9.9476503968D-06 +9.9999038881D-01*i

Computed zeros of problem 15

Z = 2.0000000000D+00 +7.7715611724D-16*i

Z = -1.1102230246D-16 -2.0000000000D+00*i

Z = -2.0000000000D+00 +1.8185296412D-15*i

Z = 7.1339486510D-15 +2.0000000000D+00*i

Z = 9.9999264604D-01 +1.0000105499D+00*i

Z = -9.9997868350D-01 +1.0000137728D+00*i

Z = -1.0000225852D+00 +1.0000115742D+00*i

Z = 1.0000128137D+00 +1.0000010942D+00*i

Z = 9.9999454029D-01 +9.9998835592D-01*i

Z = -9.9999873126D-01 +9.9997465302D-01*i

Computed zeros of problem 16

Z = -5.1200000000D+02 +2.8421709430D-14*i

Z = -2.8421709430D-14 +2.5600000000D+02*i

Z = -1.2800000000D+02 +9.3942215118D-15*i

Z = -4.4480689609D-15 +6.4000000000D+01*i

Z = -3.2000000000D+01 +3.4530397297D-15*i

Z = -8.6393762760D-16 +1.6000000000D+01*i

Z = -8.0000000000D+00 -5.7665043499D-17*i

Z = 2.9863256005D-16 +4.0000000000D+00*i

Z = -2.0000000000D+00 -1.8691279242D-16*i

Z = -2.8348317857D-17 +1.0000000000D+00*i

Computed zeros of problem 17

Z = 8.0000000000D+00 -1.5676349108D-13*i

Z = -1.7363888105D-13 +8.0000000000D+00*i

Z = -8.0000000000D+00 -1.4299221387D-13*i

Z = -7.1729446375D-13 +7.0000000000D+00*i

Z = 7.0000000000D+00 -9.8828931999D-14*i

Z = -7.0000000000D+00 -3.2178108275D-15*i

Z = 9.3174285646D-13 +4.0000000000D+00*i

Z = 6.0000000000D+00 +1.0448247645D-12*i

Z = 2.9547737248D-12 +6.0000000000D+00*i

Z = -2.8702458975D-12 +5.0000000000D+00*i

Z = -6.0000000000D+00 +9.8278667546D-13*i

Z = -5.0000000000D+00 -1.1361775741D-12*i

Z = 5.0000000000D+00 -8.1251528976D-13*i

Z = -4.0000000000D+00 +1.3530093658D-13*i

Z = 4.0000000000D+00 -2.2188333578D-13*i

Z = -3.0000000000D+00 -2.3829736724D-15*i

Z = 3.0000000000D+00 +4.3671772351D-14*i

Z = -2.0000000000D+00 -2.0059639466D-15*i

Z = -1.3402009401D-15 +1.0000000000D+00*i

Z = 2.0000000000D+00 -3.0925145376D-15*i

Z = -2.2129652046D-13 +3.0000000000D+00*i

Z = 2.4236870952D-14 +2.0000000000D+00*i

Z = 1.0000000000D+00 -2.2174354616D-16*i

Z = -1.0000000000D+00 +7.2260592489D-17*i

Computed zeros of problem 18

Z = 1.0000000003D+02 +1.0100000001D+02*i

Z = 1.0100000001D+02 +9.9999999969D+01*i

Z = 9.8999999993D+01 +1.0000000003D+02*i
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Z = 9.9999999969D+01 +9.8999999993D+01*i

Computed zeros of problem 19

Z = 1.0000000978D+03 +1.0000012661D+03*i

Z = 1.0000001451D+03 +1.0000011776D+03*i

Z = 9.9999815037D+02 +9.9999894947D+02*i

Z = 1.0000016067D+03 +9.9999860675D+02*i

Computed zeros of problem 20

Z = 1.0000000000D+04 +1.0000000000D+04*i

Z = 1.0000000000D+04 +1.0000000000D+04*i

Z = 1.0000000000D+04 +1.0000000000D+04*i

Z = 1.0000000000D+04 +1.0000000000D+04*i
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Appendix C

Comparisons of C02AFF with
other zerofinders

Here are our codes for computing zeros of random polynomials using various zerofinders. We also present
some of the results obtained.

C.1 FORTRAN code for computing ‘exact’ zeros of random
polynomials

C exroots.f

C COMPUTING THE ROOTS OF A POLYNOMIAL USING COMPANION

C MATRIX AND TO QUADRUPLE PRECISION (LAPACK)

C

IMPLICIT NONE

INTEGER NX,NCOUNT,FOUT,FOUT2,POL

PARAMETER (NX=10,FOUT=10,FOUT2=12,POL=100)

DOUBLE PRECISION B(2,0:NX),A1,A2,E1,E2,

* RWRK(2*NX)

INTEGER I,J,N,INFO,K

DOUBLE COMPLEX A(NX,NX),VL(NX,NX),VR(NX,NX),WRK(3*NX),

* EIGS(NX)

REAL DRAND,X, TX,TIME(2),TTIME, DTIME

EXTERNAL ZGEEV

C

C ....Executable statements ....

C

OPEN(FOUT,FILE=’c10fs’)

OPEN(FOUT2,FILE=’ze10os’)

N = NX

NCOUNT=0

TTIME = 0.D0

DO 500 K=1,POL

C Setup random coefficients for degree-10 monic polynomial

C

X = DRAND(K)

B(1,0) = 1.D0

B(2,0) = 0.D0

DO 100 I=1,NX

A1 = DBLE(DRAND(0))*2.D0 - 1.D0

A2 = DBLE(DRAND(0))*2.D0 - 1.D0

E1 = DBLE(DRAND(0))*20.D0 - 10.D0

E2 = DBLE(DRAND(0))*20.D0 - 10.D0

54



B(1,I)= A1*10**E1

B(2,I)= A2*10**E2

100 CONTINUE

C

C Save coefficients to compare with MATLAB

C and C02AFF and whatever.

C

DO 125 I=1,NX

WRITE(FOUT,9997)B(1,I)

WRITE(FOUT,9997)B(2,I)

125 CONTINUE

C

C Setup companion matrix for polynomials

C

DO 200 I=1,N

DO 300 J=1,N

IF (J.EQ.N) THEN

A(I,J) = -DCMPLX(B(1,N-I+1),B(2,N-I+1))

ELSE IF (J.EQ.I-1) THEN

A(I,J) = DCMPLX(1.d0,0.d0)

ELSE

A(I,J) = DCMPLX(0.d0,0.d0)

END IF

300 CONTINUE

200 CONTINUE

C

C Calculate eigenvalues of companion matrix (LAPACK)

C and calculate time taken to compute eigenvalues

TX = DTIME(TIME)

CALL ZGEEV(’N’,’N’,N,A,N,EIGS,VL,N,VR,N,WRK,3*N,RWRK,INFO)

TTIME = TTIME + DTIME(TIME)

NCOUNT = NCOUNT + 1

C

C Print eigenvalues of companion matrix (roots) to file

C

WRITE(FOUT2,9998)(EIGS(I),I=1,N)

500 CONTINUE

WRITE(*,*)’NCOUNT=’,NCOUNT

WRITE(*,*)’TIME=’,TTIME

C

9997 FORMAT(D36.30)

9998 FORMAT(D36.30 / D36.30)

9999 FORMAT(2D36.30)

CLOSE(FOUT)

CLOSE(FOUT2)

STOP

END

C.2 Computing zeros with C02AFF

This is our code to compute zeros using C02AFF for the same random polynomials created using EXROOTS.
Note that the codes for PA16, CPOLY and ZROOTS is quite similar and we shall therefore not present them.

C This reads coefficients of random polynomials, and tries out C02AFF

C on them. Saves results in another file for comparison with MATLAB

IMPLICIT NONE

INTEGER NX,NCOUNT,FIN,FOUT,FOUT2,POL

PARAMETER (NX=10,FIN=10,FOUT=12,POL=100)
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DOUBLE PRECISION ACO(2,NX+1),Z(2,NX),W(4*(NX+1)),DTIME,TTIME

INTEGER I,N,IFAIL,IGO,J

REAL TX,TIME(2)

EXTERNAL C02AFF

C

C ....Executable statements ....

C

OPEN(FIN,FILE=’c10fs’)

OPEN(FOUT,FILE=’fp10’)

N = NX

NCOUNT=0

DO 300 IGO=1,POL

ACO(1,1)=1.D0

ACO(2,1)=0.D0

C Read in coefficients from ’c10fs’

C

DO 77 I=2,N+1

READ(FIN,*)ACO(1,I)

READ(FIN,*)ACO(2,I)

77 CONTINUE

IFAIL=-1

TX = DTIME(TIME)

CALL C02AFF(ACO,N,.TRUE.,Z,W,IFAIL)

TTIME = TTIME + DTIME(TIME)

NCOUNT = NCOUNT + 1

WRITE(FOUT,120)(Z(1,J),Z(2,J),J=1,N)

100 FORMAT(2I8,2F12.5)

120 FORMAT(D28.20,3X,D28.20)

300 CONTINUE

WRITE(*,*) ’NCOUNT=’,NCOUNT

WRITE(*,*) ’TIME = ’,TTIME

CLOSE(FIN)

CLOSE(FOUT)

STOP

END

C.3 Computing zeros with MATLAB

This is our code to compute zeros using MATLAB’s roots, for the same random polynomials created using
EXROOTS.

% rts10.m -

% This program calculates the roots of 100 random

% degree 10 polynomials, reading coefficients

% from c10fs using roots

clear

format long

mtime = 0;

pol = 100; % Number of polynomials

deg = 10; % Degree of each polynomial

num = pol*deg; % Total number of zeros

n = deg-1; % step

load c10fs;

z = c10fs(:);

x = z(1:2:end);

y = z(2:2:end);

cofs = x + i*y;

fid = fopen(’mp10’,’w’);
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for i=1:deg:num

p1 = cofs(i:i+n);

p = [1;p1];

tic

zer = roots(p);

mtime = mtime + toc;

for k=1:deg

fprintf(fid,’%28.20f %28.20f\n’,real(zer(k)),imag(zer(k)));

end

end

mtime

fclose(fid);

C.4 Calculating error and Scatter plots

This is the code used to calculate the error in roots and C02AFF and produce a scatter plot. The code for
the other zerofinders requires just a few appropriate changes.

% error1.m -- Produce scatter plot for the error in

% roots and C02AFF

%

% Load computed zeros of all cases

pol = 100; % Number of polynomials

deg = 10; % degree of polynomial

num = pol*deg; % Total number of zeros

n = deg-1; % step

load ze10os;

load mp10;

load fp10;

xzer = ze10os(1:2:end);

yzer = ze10os(2:2:end);

zstd = xzer + i*yzer;

xm = mp10(:,1);

ym = mp10(:,2);

zm = xm + i*ym;

xc = fp10(:,1);

yc = fp10(:,2);

zc = xc + i*yc;

% sort zeros for each polynomial for comparison

for ii = 1:deg:num

kd = zstd(ii:ii+n);

[jk,in] = sort(abs(kd));

zstd(ii:ii+n) = kd(in);

km = zm(ii:ii+n);

[jk,in] = sort(abs(km));

zm(ii:ii+n) = km(in);

kc = zc(ii:ii+n);

[jk,in] = sort(abs(kc));

zc(ii:ii+n) = kc(in);

end

%Compute errors

%

errc02 = abs(zstd - zc);

errmat = abs(zstd - zm);

% scatter plots

figure

loglog(errc02,errmat,’x’)

hold on
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plot([1e-30 1],[1e-30 1],’r’)

xlabel(’error in C02AFF’)

ylabel(’error in ROOTS’)

title([’ DEGREE=’ int2str(deg) ’ No RANDOM POLYNOMIALS =’ int2str(pol)])

grid on

C.5 More scatter plots

These are other scatter plots which we obtained on comparing the error in polynomials of other degrees.
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Figure C.1: Scatter plots showing for degree-4 random polynomials
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Figure C.2: Scatter plots showing for degree-8 random polynomials
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Figure C.3: Scatter plots showing for degree-12 random polynomials
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