Newbury, James (2011) Applications of Malliavin calculus to the pricing and hedging of Bermudan options. Masters thesis, oxford university.

PDF (mscmcf dissertation)
551kB 
Abstract
The pricing of Bermudan options, which give the holder the right to buy or sell an underlying asset at a predetermined price and at a discretely spaced number of times prior to maturity, can be based on a deterministic method or on a probabilistic one. Deterministic methods such as finite differences lose their efficiency as the dimension of the problem increases, and they are therefore known to suffer from the "curse of dimensionality". Probabilistic methods enable us to overcome this problem by using Monte Carlo simulations. One particular method is the Malliavin pricing and hedging algorithm, which uses representation formulas for conditional expectation and its derivative to approximate the price and delta of a Bermudan option. This paper specifically deals with how the powerful tools of Malliavin calculus are applied in the derivation of such representation formulas, and looks at how the latter are subsequently used in the pricing and hedging algorithm.
Key words: Bermudan option, dynamic programming principle, Malliavin
derivative operator, Skorohod integral, first and second variational processes,
representation formula, localizing function.
Item Type:  Thesis (Masters) 

Subjects:  H  N > Mathematics education 
Research Groups:  Mathematical and Computational Finance Group 
ID Code:  1381 
Deposited By:  Laura Auger 
Deposited On:  13 Aug 2011 08:56 
Last Modified:  29 May 2015 19:04 
Repository Staff Only: item control page