The Mathematical Institute, University of Oxford, Eprints Archive

STOCHSIMGPU: parallel stochastic simulation for the sytems biology toolbox 2 for matlab

Klingbeil, G. and Erban, R. and Giles, M. B. and Maini, P. K. (2011) STOCHSIMGPU: parallel stochastic simulation for the sytems biology toolbox 2 for matlab. Bioinformatics, 27 (8). pp. 1170-1171.

[img]
Preview
PDF
129Kb
[img]
Preview
PDF
168Kb
[img]
Preview
PDF
277Kb
[img]
Preview
PDF
179Kb

Abstract

Motivation: The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB.

Results: The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user's models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2.

Availability: The software is open source under the GPL v3 and available at http://www.maths.ox.ac.uk/cmb/STOCHSIMGPU. The web site also contains supplementary information.

Item Type:Article
Subjects:A - C > Biology and other natural sciences
Research Groups:Centre for Mathematical Biology
ID Code:1060
Deposited By:Philip Maini
Deposited On:21 Apr 2011 08:32
Last Modified:21 Apr 2011 08:32

Repository Staff Only: item control page