A mathematical model of tumour and blood pH\textsubscript{e} regulation: The HCO\textsubscript{3}/CO\textsubscript{2} buffering system

Natasha K. Martina,b,* Eamonn A. Gaffneya, Robert A. Gatenbyc, Robert J. Gilliesc, Ian F. Robeyd, Philip K. Mainia,e

aCentre for Mathematical Biology, Mathematical Institute, Oxford University, 24-29 St. Giles', Oxford, OX1 3LB, UK
bDepartment of Social Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK
cH. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
dUniversity of Arizona, Tucson, AZ, USA
eOxford Centre for Integrative Systems Biology, Department of Biochemistry, Oxford University, South Parks Road, OX1 3QU, UK

\section*{A R T I C L E I N F O}

Article history:
Received 21 September 2010
Received in revised form 5 December 2010
Accepted 7 December 2010
Available online 15 December 2010

Keywords:
Buffering
Acidity
Cancer
Bicarbonate

\section*{A B S T R A C T}

Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion and metastasis. Previous research has proposed the potential benefits of manipulating systemic pH\textsubscript{e}, and recent experiments have highlighted the potential for buffer therapy to raise tumour pH\textsubscript{e}, prevent metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood pH\textsubscript{e}, we develop a simple compartmentalised ordinary differential equation model of pH\textsubscript{e} regulation by the HCO\textsubscript{3}/CO\textsubscript{2} buffering system. An approximate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour pH\textsubscript{e} in both humans and mice. From this analysis, we suggest promising alternative and combination therapies, and identify specific patient groups which may show an enhanced response to buffer therapy. In addition, numerical simulations are performed, validating the model against well-known metabolic/respiratory disorders and predicting how these disorders could change tumour pH\textsubscript{e}.

\section*{1. Introduction}

Malignant tumours consume significantly higher amounts of glucose than corresponding normal tissues or benign tumours [1,2]. This increased glucose uptake is observed even in the presence of adequate levels of oxygen, a phenomenon referred to as aerobic glycolysis. The use of aerobic glycolysis by cancer cells was characterised as early as the 1930s and named the Warburg effect [3,4]. The inefficiency of this type of metabolism significantly contributes to the observed increased glucose uptake and a subsequently increased acid load.

Upregulated aerobic glycolysis is a hallmark of malignant cancers [1]. The high level of glycolysis results in increased production of H+ ions, leading to an acidification of the tumour microenvironment. This has been well documented by experiments showing that solid tumour extracellular pH (pHe) is commonly 0.5–1 units lower than normal tissue (tumour pH\textsubscript{e} of 6.5–7 vs a normal tissue pH\textsubscript{e} of 7.4) [5–7].

Despite the early discovery of the Warburg effect, little is understood about the reasons why malignant tumours consistently upregulate the use of aerobic glycolysis. In a series of papers, Gatenby et al. hypothesised that tumour acidification confers an advantage to the tumour cells, by producing a harsh environment in the peritumoural soft tissues as acid is transported along concentration gradients from the tumour to adjacent normal regions. This results in normal cell death, extracellular matrix degradation, increased angiogenesis and disordered immune response facilitating tumour invasion [8,4,1,9,10,2]. This ‘acid mediated invasion hypothesis’ is supported by experiments which have shown that normal cells proliferate optimally at a pH\textsubscript{e} of 7.4, with a steep decrease in proliferative ability below 7.1, while tumour cells obtain an optimal proliferation rate at pH\textsubscript{e} 6.8, which correlates with the slightly acidic environment found in invasive tumours [9].

The ‘acid-mediated invasion hypothesis’ leads to the prediction that neutralising the acidic tumour pH\textsubscript{e} will inhibit invasion and, subsequently, spontaneous metastasis, which has been explored in a recent set of experiments [11]. To test this prediction, Robey...
et al. implanted highly metastatic human breast cancer cells in the mammary fat pad of severe combined immunodeficient mice. Oral administration of sodium bicarbonate (which acts as a buffer to resist changes in pH) raised primary tumour pH, reduced the number and size of metastases, and prolonged survival [11]. More generally, Gatenby and Gawlinski [4] propose that manipulation of systemic pH (either through acidification or alkalinisation) could reduce tumour growth by perturbing the system from the optimal pH for tumour proliferation.

To examine how manipulation of the systemic buffering system can alter tumour pH, we develop a simple but realistic model of tumour pH regulation via the HCO$_3$/CO$_2$ system, including the effects of physiological control of blood buffering, detailed in Section 2. With this model, we explore model behaviour by constructing an asymptotic approximation (Section 2.2) and subsequently perform a sensitivity analysis to ascertain the key parameters regulating tumour pH, and identify which of those parameters can be altered with minimal effect on blood pH regulation (Section 3.4). Additionally, we model respiratory and metabolic disordered states, comparing blood pH predictions to known data, and predicting the resulting effect on tumour pH (Section 3.1).

2. Mathematical model

2.1. Model formulation and construction

To produce a basic model of blood and tumour buffering we first develop a simple model of the main extracellular buffering system, the HCO$_3$/CO$_2$ system, along with the physiological regulation of this system. The aim is to develop a simple model of pH at the tumour and blood compartment scale which accurately models the physiological regulation of tumour and blood pH. Although as a first approximation, we compare the behaviour of our model to known human data. Any additional buffering from intrinsic non-motile buffers (such as proteins, amino acids, and phosphates) operate on a faster scale than the HCO$_3$/CO$_2$ buffer. As there is little to no movement of intrinsic buffers between compartments, we assume this contribution in the tumour tissue is constant and implicitly incorporated in the tumour proton production parameter. Furthermore, our model tracks arterial blood delivery to the tumour, which has haemoglobin in the oxygen-bound form with low proton carrying capacity. Consequently, it is reasonable to assume only a small proportion of blood delivered to hypoxic areas of the tumour will contain the deoxygenated form of haemoglobin which can bind protons. This hypoxic subcompartment would be low in bicarbonate, high in CO$_2$, and likely have poor flow and connectivity to the vascular network, and therefore would likely reduce the potential efficacy of any buffer delivery to that region. Subsequently, our model could be extended to include additional buffering components at different spatial and temporal scales. Hence, we consider a two-compartment model, simulating the blood and tumour tissue, incorporating the bicarbonate–carbon dioxide system. Crucially, the model also includes the physiological regulation of the bicarbonate system through ventilation and kidney filtration. In this respect, our model can be seen as an extension of the work of [12], and our analysis will show that inclusion of these effects can significantly affect model predictions. As we are interested in average tumour pH and not pH differences within the tumour, we neglect fine scale spatial variations in tumour acid production. Hence, we can subsequently ignore regional variation in oxygen levels and consumption as considered in previous models [12] and assume an average acid production rate. Furthermore, as tumour cells exhibiting the glycolytic phenotype rely on glycolysis even in the presence of oxygen, the local oxygen concentration should not significantly alter acid production.

The schematic for the mathematical model is shown in Fig. 1. We have that $B_{t,b}$ represents the concentration of bicarbonate per volume in the tumour and blood, respectively, in units of mol/L. $H_{t,b}$ represents the volumetric concentration of free protons within the tumour and blood, respectively, in units of mol/L. $C_{t,b}$ represents the concentration of carbon dioxide for the tumour and blood, respectively, in units of mol/L. Note that as we are modelling extracellular pH, we model the levels of ions in the tumour interstitial fluid surrounding the cells, and neglect the intracellular pH of the tumour cells themselves.

Each equation includes a term describing the chemical buffering reactions of the HCO$_3$/CO$_2$ system, which proceeds as follows:

$$HCO_3^- + H^+ \rightleftharpoons \frac{k_1}{k_2} CO_2 + H_2O. \quad (1)$$

The first two terms in each equation describe this chemical buffering reaction, with k_2 and k_1 the reaction rate constants. This reaction is accelerated by the presence of the enzyme carbonic anhydrase (CA), the activity of which varies depending on the isozyme type. In our model, we include the action of carbonic anhydrase in both the blood and tumour by increasing the rate constants of the reaction to reflect this acceleration. The fastest acceleration occurs in the blood, where CA II in red blood cells can accelerate the hydration reaction 50000 to 1000000 fold over the uncatalyzed rate at human body temperature [13]. Tumour associated carbonic anhydrases include CA II and CA IX [14], and the activity of CA IX has recently been found to be as high as CA II [15]. Hence, we assume for simplicity that the catalytic rates in the blood and tumour tissue are equal. Further, the asymptotic analysis indicates that the model is robust to changes of several orders of magnitude of these parameters (provided the pK_a and hence ratio of the kinetic parameters, remains equal), as this will only alter the fast reaction timescale as the solution relaxes to the intermediate and slow solutions.

Fig. 1. Schematic of the systemic buffering model presented in Eqs. (2)-(7). The two compartments, blood and tumour, are linked through the vascular transfer of protons and buffering components such as carbon dioxide (CO$_2$) and bicarbonate (HCO$_3^-$). In the blood, various physiological systems such as ventilation and renal filtration tightly regulate the buffering system.
The equations also include a vascular exchange term for the respective ion or molecule between the blood and the tumour. Hence, \(\gamma_1, \gamma_2, \gamma_3 \) are the vessel flux rates for bicarbonate, lactate, and carbon dioxide, respectively. The vessel fluxes are calculated by \(\gamma_i = VAD \times P_i \) where \(VAD \) is the vessel length per tumour cross section area (in cm/cm\(^2\)), and \(P_i \) is the vessel permeability (in cm/s) for the respective ion or molecule [16]. In order to ensure conservation of total quantities of \(\mathrm{H}^+ \), \(\mathrm{CO}_2 \) and \(\mathrm{HCO}_3^- \) during the vascular exchange process from the tumour to the blood, we multiply \(\gamma_i \) by \(v_i \), where \(v_i = V_{tumour}/V_{blood} \) and where \(V_{tumour} \) is the volume of the tumour and \(V_{blood} \) is the volume of blood. Although tumour volume varies over time, the timescale of tumour growth is much slower than the pH regulation dynamics examined in this model, and we therefore assume tumour size is constant. Furthermore, the sensitivity analysis in Section 3.4 indicates the system is not sensitive to this parameter.

The first three equations capture the tumour dynamics, and will be discussed in turn below.

\[
\frac{dC_t}{dt} = k_2 C_t - k_1 B_t H_t + \gamma_2 (C_t - C_b) . \tag{3}
\]

Eq. (3) models the tumour H\(^+\) concentration. The third term, \(\phi_2 \), is the net production of H\(^+\) per unit volume of the tumour through aerobic glycolysis, implicitly incorporating the fixed contribution of minor additional non-motile tissue buffering components which act on a faster timescale than the other reactions detailed. It is this production term that is generally higher than normal tissue due to the upregulation of glycolysis in malignant tumours. The final term is the vascular exchange, where \(\gamma_2 \) is the vessel flux for lactate as protons move in association with lactate to maintain electroneutrality.

\[
\frac{dC_i}{dt} = k_1 B_t H_t - k_2 C_t + \phi_1 - \gamma_2 (C_t - C_b) . \tag{4}
\]

Eq. (4) represents the tumour CO\(_2\) dynamics. The third term, \(\phi_1 \), represents the tumour production of CO\(_2\) from cellular metabolism.

The last three equations capture the blood dynamics, and will be presented in turn. Firstly:

\[
\frac{dC_b}{dt} = k_1 B_b C_b - k_2 B_b H_b + \phi_1 C_b - \gamma_1 (B_b - B_c) . \tag{5}
\]

This equation describes the blood HCO\(_3^-\). The third and fourth terms are standard representations used to model the complex process of renal filtration and reabsorption of bicarbonate [17,18]. The details of this system can be found in A. Briefly, an increase in blood CO\(_2\) results in more conversion of CO\(_2\) into HCO\(_3^-\) and H\(^+\) inside the kidney nephrons, elevated levels of acid secretion into the bladder, and increased absorption of HCO\(_3^-\) into the bloodstream. If CO\(_2\) levels are stable (through ventilation), then any increases in HCO\(_3^-\) result in an increased rate of renal bicarbonate filtration (and subsequent loss in the urine). Here, \(\phi_1 \) is the acid secretion rate, and \(\gamma_1 \) is the bicarbonate filtration rate. The fifth term, \(\phi_0 \), is the bicarbonate treatment term used in Robey et al. [11] study we examine in the sensitivity section.

\[
\frac{dH_b}{dt} = \frac{\mathrm{chemical \ reactions}}{\mathrm{body \ production}} + \frac{\mathrm{vascular \ exchange}}{\mathrm{body \ production}} = \phi_3 + \gamma_2 v_f (H_t - H_b) . \tag{6}
\]

Eq. (6) models the blood H\(^+\) dynamics. The first two terms in Eq. (6) represent the bicarbonate buffering reaction kinetics in the blood. The third term represents the net contribution of protons from the rest of the body tissues (except for the tumour) after the contribution of non-motile tissue buffers.

\[
\frac{dC_b}{dt} = \frac{\mathrm{chemical \ reactions}}{\mathrm{body \ production}} + \frac{\mathrm{ventilation}}{\mathrm{vascular \ exchange}} = \phi_4 - \lambda_2 C_b f(C_b) + \gamma_2 v_f (C_t - C_b) . \tag{7}
\]

Eq. (7) models the blood CO\(_2\) concentration. The third term is the CO\(_2\) source from the normal body tissues; here \(\phi_4 \) represents the rate of CO\(_2\) entry into the bloodstream from the normal tissue.

The fourth term in Eq. (7) represents the regulation of blood CO\(_2\) levels by respiration, where CO\(_2\) lost through ventilation is proportional to the product of the ventilation rate, \(f(C_b) \), and the CO\(_2\) concentration. The function for ventilation we use is:

\[
f(C_b) = \begin{cases} V_{\text{min}} & \text{if } f(C_b) < V_{\text{min}}, \\ V_{\text{intercept}} - V_{\text{intercept}} & \text{if } V_{\text{min}} < f(C_b) < V_{\text{max}}, \\ V_{\text{max}} & \text{if } f(C_b) > V_{\text{max}}. \end{cases}
\]

Note the linearity over a range with minimum and maximum thresholds [19]. Although the specific form of this term is a simplification of the complex dynamics surrounding ventilation, it is an appropriate approximation for the purposes of our model. The experimental ventilation response to blood CO\(_2\) has been well quantified in both humans and mice and used to derive biological values for the ventilation parameters [20–22].

The initial conditions are \(C_b(0) = C_0, C_t(0) = C_0, B_b(0) = b_0, B_t(0) = b_0, H_b(0) = h_0, H_t(0) = h_0 \). We choose \(C_0, b_0, \) and \(h_0 \) to be the standard blood values of CO\(_2\), HCO\(_3^-\), and H\(^+\), respectively. This allows a clear visualisation of H\(^+\) and CO\(_2\) accumulation in the tumour, and subsequent depletion of HCO\(_3^-\). Furthermore, as tumours can develop in many types of tissue with different metabolic rates, the baseline tissue values are likely to vary, but as there is only one steady-state the initial conditions do not affect the long-term behaviour of the system and are not a focus of this study.

In order to non-dimensionalise our model, we use the rescaling \(\tau = k_f t, b_0 = b_0, c_0 = C_t, h_0 = H_b, b = b_0, c = C_b, h = H_b \) to obtain the system,

\[
\frac{db}{d\tau} = \delta_1 (c_t - b_b h_t) + \Gamma_1 (b_T - b_T) , \tag{9}
\]

\[
\frac{dc}{d\tau} = \delta_2 (c_t - b_b h_t) + \phi_2 c_b - \delta_1 c_t + \Gamma_2 (h_T - h_T) , \tag{10}
\]

\[
\frac{dc}{d\tau} = -c_t - b_b h_t + \phi_3 - \delta_3 (c_t - c_b) , \tag{11}
\]

\[
\frac{db}{d\tau} = \delta_3 (c_t - b_b h_t) + \phi_4 - \delta_2 c_b + \theta_1 - \delta_3 (c_t - c_b) , \tag{12}
\]

\[
\frac{dh}{d\tau} = \delta_4 (c_t - b_b h_t) + \phi_5 + \delta_2 c_b - \theta_1 - \delta_3 (c_t - c_b) , \tag{13}
\]

\[
\frac{dc}{d\tau} = -c_b + \phi_6 - \delta_2 c_t + \phi_3 - \delta_3 (c_b - c_b) + \Gamma_3 (h_T - h_T) , \tag{14}
\]

with \(\delta_2 = \frac{h}{h_0}, \delta_3 = \frac{k_f h_0}{k_f h_0}, \Gamma_1 = \frac{b_0}{b_0}, \delta_2 = \frac{b_0}{b_0}, \phi_4 = \frac{h}{h_0}, \gamma_2 = \frac{h}{h_0}, \phi_3 = \frac{h}{h_0}, \) and \(\phi_5 = \frac{h}{h_0} \).

Additionally, the non-dimensionalised ventilation function is now:

\[
\delta_2 (c_b) = \begin{cases} \Delta_{\text{min}} & \text{if } \delta_2 (c_b) < \Delta_{\text{min}}, \\ \Delta_{1} - \Delta_{2} & \text{if } \Delta_{\text{min}} < \delta_2 (c_b) < \Delta_{\text{max}}, \\ \Delta_{\text{max}} & \text{if } \delta_2 (c_b) > \Delta_{\text{max}}, \end{cases}
\]

with \(\Delta_{\text{min}} = \frac{\epsilon}{k} V_{\text{min}}, \Delta_{1} = \frac{\epsilon}{k} V_{\text{intercept}}, \Delta_{2} = \frac{\epsilon}{k} V_{\text{intercept}}, \) and \(\Delta_{\text{max}} = \frac{\epsilon}{k} V_{\text{max}}. \)
The initial conditions become:

\[c_0(0) = 1, \; c_1(0) = 1, \; b_0(0) = 1, \; b_1(0) = 1, \; h_0(0) = 1, \; \text{and} \; h_1(0) = 1. \]

(16)

From the calculations detailed in A, the full parameter sets for a laboratory mouse and human are shown in Table 1. The non-dimensionalised values for a mouse and human are shown in Table 2.

2.2. Asymptotic simplification of the model

In this section we will construct a uniformly valid asymptotic approximation. This analytical solution is used to understand the general model behaviour and key parameter groupings. It is also used to perform a sensitivity analysis in Section 3.4 in order to examine which parameters have a large effect on tumour pHe. Potential treatments are then suggested which relate to the important parameters indicated by the sensitivity analysis.

Preliminary numerical simulations, as well as the wide variation in parameter values spanning several orders of magnitude, indicate different timescales in our solution. There are three characteristic timescales for our system. The inner, or fastest, is the timescale on which the reaction dynamics take place (\(k_1\) and \(k_2\) in Eqs. (2)–(7)). This is on the order of milliseconds. Then, there is an intermediate timescale where proton production takes place, on the order of seconds (\(\phi_1\) and \(\phi_2\) in Eqs. (3) and (6)). This intersects with a slower, outer solution which takes into account the rest of the physiology (kidney filtration, ventilation, etc.), and occurs on the scale of minutes to hours (\(\phi_3, \lambda_1, \lambda_2\) in Eqs. (5) and (7)). With this in mind, let us first examine the inner, fast solution.

2.2.1. Fast timescale dynamics

From our biological knowledge of the system, we know that the chemical reaction equations occur on the order of nano- to milliseconds, and are much faster than the other processes in our system. Furthermore, we can see that the parameter \(\delta_3\) is several orders of magnitude larger than any other, indicating that the \(h_{i,b}\) equations will vary on the fast timescale (which is verified by proceeding with a standard asymptotic analysis). Thus we anticipate that chemical reactions will dominate the fast dynamics. To proceed, we define \(c = 10^{-3}\), whereupon Eqs. (2)–(7) recast to:

\[
\frac{db_i}{dt} = \delta_1 (c_i - x_2 b_i h_i) + c^2 \tilde{f}_1 (b_0 - b_i), \quad (17)
\]

\[
\frac{dh_i}{dt} = \delta_3 (c_i - x_2 b_i h_i) + \epsilon \Phi_i - c^2 \Phi_i (b_0 - h_i), \quad (18)
\]

\[
\frac{d\Phi_2}{dt} = - (c_i - x_2 b_i h_i) + c^2 \Phi_2 - c^2 \Phi_2 (c_i - c_0), \quad (19)
\]

\[
\frac{db_{i,0}}{dt} = \delta_3 (c_0 - x_2 b_{i,0} h_i) + c^2 \Phi_{2,0} - c^2 \Phi_{2,0} (c_i - c_0), \quad (20)
\]

\[
\frac{d\Phi_{2,0}}{dt} = - (c_0 - x_2 b_{i,0} h_i) + c^2 \Phi_{2,0} + c^2 \Phi_{2,0} (c_i - c_0). \quad (22)
\]

Table 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Mouse</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_0)</td>
<td>(3.98 \times 10^{-8})</td>
<td>(3.98 \times 10^{-8})</td>
</tr>
<tr>
<td>(b_0)</td>
<td>(2.4 \times 10^{-2})</td>
<td>(2.4 \times 10^{-2})</td>
</tr>
<tr>
<td>(c_0)</td>
<td>(1.2 \times 10^{-3})</td>
<td>(1.2 \times 10^{-3})</td>
</tr>
<tr>
<td>(P_1)</td>
<td>(3.4 \times 10^{-5})</td>
<td>(3.4 \times 10^{-5})</td>
</tr>
<tr>
<td>(P_2)</td>
<td>(1.2 \times 10^{-4})</td>
<td>(1.2 \times 10^{-4})</td>
</tr>
<tr>
<td>(P_3)</td>
<td>(1 \times 10^{-3})</td>
<td>(1 \times 10^{-3})</td>
</tr>
<tr>
<td>(VAD)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>(\nu_r)</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>(\phi_1)</td>
<td>(7.8 \times 10^{-6})</td>
<td>(7.8 \times 10^{-6})</td>
</tr>
<tr>
<td>(\phi_4)</td>
<td>(3.7 \times 10^{-5})</td>
<td>(3 \times 10^{-6})</td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>(6.16 \times 10^{-2})</td>
<td>(1.14 \times 10^{-2})</td>
</tr>
<tr>
<td>(\phi_3)</td>
<td>(1.5 \times 10^{-6})</td>
<td>(1.2 \times 10^{-6})</td>
</tr>
<tr>
<td>(\phi_5)</td>
<td>(2 \times 10^{-7})</td>
<td>(2.5 \times 10^{-7})</td>
</tr>
<tr>
<td>(\lambda_1)</td>
<td>(3 \times 10^{-3})</td>
<td>(5.2 \times 10^{-4})</td>
</tr>
<tr>
<td>(\lambda_2)</td>
<td>102</td>
<td>0.042</td>
</tr>
<tr>
<td>(k_1)</td>
<td>(2.73 \times 10^{4})</td>
<td>(2.73 \times 10^{4})</td>
</tr>
<tr>
<td>(k_1)</td>
<td>(3.437 \times 10^{10})</td>
<td>(3.437 \times 10^{10})</td>
</tr>
<tr>
<td>(V_{slope})</td>
<td>0.34</td>
<td>1.1 \times 10^{5}</td>
</tr>
<tr>
<td>(V_{max})</td>
<td>5.5 \times 10^{-4}</td>
<td>1</td>
</tr>
<tr>
<td>(V_{max})</td>
<td>1.4 \times 10^{-4}</td>
<td>0.02</td>
</tr>
<tr>
<td>(\theta_1)</td>
<td>9.4 \times 10^{-5}</td>
<td>1.237</td>
</tr>
<tr>
<td>(\theta_1)</td>
<td>7.6 \times 10^{-6}</td>
<td>6 \times 10^{-7}</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Mouse</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_1)</td>
<td>(5.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-2})</td>
</tr>
<tr>
<td>(\Gamma_1)</td>
<td>(2.5 \times 10^{-8})</td>
<td>(2.5 \times 10^{-8})</td>
</tr>
<tr>
<td>(\delta_3)</td>
<td>(3.02 \times 10^{4})</td>
<td>(3.02 \times 10^{4})</td>
</tr>
<tr>
<td>(\Phi_1)</td>
<td>(7.17 \times 10^{-1})</td>
<td>(7.17 \times 10^{-1})</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>(8.79 \times 10^{-8})</td>
<td>(8.79 \times 10^{-8})</td>
</tr>
<tr>
<td>(\varphi_2)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(\Phi_3)</td>
<td>(6.11 \times 10^{-9})</td>
<td>(7.63 \times 10^{-9})</td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>(7.32 \times 10^{-7})</td>
<td>(7.32 \times 10^{-7})</td>
</tr>
<tr>
<td>(\Phi_2)</td>
<td>(1.13 \times 10^{-7})</td>
<td>(2.11 \times 10^{-8})</td>
</tr>
<tr>
<td>(\varphi_1)</td>
<td>1.10 \times 10^{-7}</td>
<td>1.90 \times 10^{-8}</td>
</tr>
<tr>
<td>(\theta_1)</td>
<td>1.16 \times 10^{-8}</td>
<td>9.16 \times 10^{-10}</td>
</tr>
<tr>
<td>(v_{F1})</td>
<td>(2.5 \times 10^{-9})</td>
<td>(2.5 \times 10^{-9})</td>
</tr>
<tr>
<td>(\Phi_3)</td>
<td>(1.28 \times 10^{-3})</td>
<td>(1.1 \times 10^{-9})</td>
</tr>
<tr>
<td>(v_{F2})</td>
<td>(8.79 \times 10^{-9})</td>
<td>(8.79 \times 10^{-9})</td>
</tr>
<tr>
<td>(\Phi_4)</td>
<td>(1.13 \times 10^{-6})</td>
<td>(9.18 \times 10^{-6})</td>
</tr>
<tr>
<td>(v_{F1})</td>
<td>(7.32 \times 10^{-8})</td>
<td>(7.32 \times 10^{-8})</td>
</tr>
<tr>
<td>(\Delta_{max})</td>
<td>(5.23 \times 10^{-7})</td>
<td>(3.08 \times 10^{-8})</td>
</tr>
<tr>
<td>(\Delta_1)</td>
<td>(1.52 \times 10^{-6})</td>
<td>(2.03 \times 10^{-6})</td>
</tr>
<tr>
<td>(\Delta_2)</td>
<td>(3.51 \times 10^{-7})</td>
<td>(1.9 \times 10^{-8})</td>
</tr>
<tr>
<td>(\Delta_{max})</td>
<td>(2.05 \times 10^{-6})</td>
<td>(1.54 \times 10^{-6})</td>
</tr>
</tbody>
</table>

The MTB is a database of laboratory mouse strain measurements of phenotypic and genotypic data [56]. The database is located at http://tumor.informatics.jax.org.
The ventilation function becomes:
\[
\tilde{\dot{V}}(c_b) = \begin{cases} \\
\tilde{\Lambda}_{\text{min}} & \text{if } \tilde{\chi}_3(c_b) < \tilde{\Lambda}_{\text{min}}, \\
\Lambda_1 c_b - \Lambda_2 & \text{if } \tilde{\Lambda}_{\text{min}} < \tilde{\chi}_3(c_b) < \tilde{\Lambda}_{\text{max}}, \\
\tilde{\Lambda}_{\text{max}} & \text{if } \tilde{\chi}_3(c_b) > \tilde{\Lambda}_{\text{max}},
\end{cases}
\]
with \(\Lambda_{\text{min}} = \frac{1}{\tilde{\Lambda}_{\text{min}}}, \Lambda_1 = \frac{1}{\Lambda_{\text{max}} V_{\text{max}}}, \Lambda_2 = \frac{1}{\Lambda_{\text{max}} V_{\text{max}}},\) and \(\tilde{\Lambda}_{\text{max}} = \frac{1}{\tilde{\Lambda}_{\text{max}} V_{\text{max}}}.\)

Note that we can decouple the reaction dynamics by making the following substitution: \(u_1 = b_1 + \delta_1 c_b,\ u_2 = b_2 + \delta_1 c_b,\ v_1 = h_1 + \delta_2 c_b,\ v_2 = h_2 + \delta_2 c_b.\) With these substitutions, Eqs. (17)–(22) become:
\[
\frac{du}{dt} = \tilde{\lambda} - c^2 \tilde{\Lambda} \left(u_2 - \frac{1}{3} v_2 + \frac{1}{3} h_2 - u_1 - \frac{1}{3} v_1 - \frac{1}{3} h_1 \right),
\]
\[
\frac{dv}{dt} = \rho \Phi_2(\frac{1}{3} u_2 - \frac{1}{3} v_2 - h_2) - c^2 \tilde{\Lambda} \left(u_2 - \frac{1}{3} v_2 + \frac{1}{3} h_2 - u_1 - \frac{1}{3} v_1 - \frac{1}{3} h_1 \right),
\]
\[
\frac{d\rho}{dt} = \rho \Phi_3 + c^2 \tilde{\Lambda} v_1(\rho_1 - h_1 - v_2 - h_2),
\]
\[
\frac{d\phi_1}{dt} = \phi_1 v_1(\rho_1 - h_1 - v_2 - h_2),
\]
\[
\frac{d\phi_2}{dt} = \phi_2(\frac{1}{3} u_2 - \frac{1}{3} v_2 - h_2) - \rho_2 \Phi_4 + c^2 \tilde{\Lambda} v_1(\rho_1 - h_1 - v_2 - h_2),
\]
\[
\frac{d\phi_3}{dt} = \phi_3 + c^2 \tilde{\Lambda} \left(u_2 - \frac{1}{3} v_2 - h_2 \right),
\]
\[
\frac{dt}{dt} = \frac{\tilde{\rho}_2}{\tilde{\rho}_{12}}.
\]

These equations have one positive, stable steady state given by
\[
\tilde{h}_{1-} = \frac{(-1 - \delta_1 \rho_2 A_1 + \delta_1 \rho_2 A_2) + \sqrt{(-1 - \delta_1 \rho_2 A_1 + \delta_1 \rho_2 A_2)^2 + 4\delta_1 \rho_2 A_1}}{2\delta_1 \rho_2},
\]
\[
\tilde{h}_{1+} = \frac{(-1 - \delta_1 \rho_2 A_3 + \delta_1 \rho_2 A_4) + \sqrt{(-1 - \delta_1 \rho_2 A_3 + \delta_1 \rho_2 A_4)^2 + 4\delta_1 \rho_2 A_4}}{2\delta_1 \rho_2}.
\]

Therefore, in our original variables, the solution, which we will denote as \(W_{\text{fast}},\) follows these equations:
\[
\frac{dh_1}{dt} = -\delta_2 \rho_1 h_1 + (-1 - \delta_1 \rho_2 A_1 + \delta_1 \rho_2 A_2) h_1 + A_2,
\]
\[
\frac{dh_2}{dt} = -\delta_2 \rho_1 h_2 + (-1 - \delta_1 \rho_2 A_3 + \delta_1 \rho_2 A_4) h_2 + A_4,
\]
\[
\rho_1 = \frac{1}{\delta_1} (A_2 - h_1),
\]
\[
\rho_2 = \frac{1}{\delta_1} (A_4 - h_2),
\]
\[
b_1 = A_2 + \frac{b_1}{b_2} A_2 + \frac{b_2}{b_1} h_2,
\]
\[
b_2 = A_4 + \frac{b_1}{b_2} A_2 + \frac{b_2}{b_1} h_2.
\]

In general, the model dynamics of interest on the intermediate and slow timescales are insensitive to the timescales of the fast reactions (providing the fast reactions remain fast). Hence, altering the specific kinetic parameters (but keeping the pK_a and hence the ratio of these parameters, equal) does not alter the system behaviour on the timescales of interest.

2.2.2. Intermediate timescale dynamics

To examine the intermediate timescale dynamics, let us rescale time, so \(\tau = c t.\) We have, at leading order, again noting that our variables \(v_{1,2}\) are not scaled to order 1, but instead \(O(\delta) = O(10^3),\)
\[
\frac{dv_1}{dt} = \frac{dv_2}{dt} = 0,
\]
\[
\frac{dt}{dt} = \frac{dt}{\delta t},
\]
\[
\frac{d\phi_1}{dt} = \phi_1 v_1(\rho_1 - h_1 - v_2 - h_2),
\]
\[
\frac{d\phi_2}{dt} = \phi_2(\frac{1}{3} u_2 - \frac{1}{3} v_2 - h_2) - \rho_2 \Phi_4 + c^2 \tilde{\Lambda} v_1(\rho_1 - h_1 - v_2 - h_2),
\]
\[
\frac{d\phi_3}{dt} = \phi_3 + c^2 \tilde{\Lambda} \left(u_2 - \frac{1}{3} v_2 - h_2 \right),
\]
\[
\frac{dv_1}{dt} = \frac{dv_2}{dt} = 0.
\]

Thus we can see immediately that \(v_1\) and \(v_2\) are constant as previously and, respectively, denoted by \(A_1\) and \(A_2.\) Further, \(h_1\) and \(h_2\) are at the slow dynamics steady states, given by Eqs. (36) and (37).

Hence, we are left with only two ODEs, Eqs. (45) and (48), where the initial conditions for \(v_1\) and \(v_2\) are the equilibrium values from the fast solution, \(A_1\) and \(A_2,\) respectively.

Here we can see that the positive equilibrium solutions are:
\[
\tilde{v}_2 = \frac{\rho_3 \Lambda_2 + \rho_3 \sqrt{\tilde{\rho}_2^2 + 4\rho_3^2 \Lambda_2^2 (\Phi_2 + \rho_3 \Phi_4 + v_1 \Phi_1 + \rho_3 \Phi_3 v_1)}}{2 \rho_3 \Lambda_2},
\]
\[
\tilde{v}_1 = \frac{\rho_3 \Lambda_2 + \rho_3 \sqrt{\tilde{\rho}_2^2 + 4\rho_3^2 \Lambda_2^2 (\Phi_2 + \rho_3 \Phi_4 + v_1 \Phi_1 + \rho_3 \Phi_3 v_1)}}{2 \rho_3 \Lambda_2},
\]
where standard linear analysis shows this steady state is stable.
Changing back into our original variables so we can compare our approximate analytical solution to our numerical simulations, the solutions (which we will denote as \(W_{\text{intermediate}}\)) satisfy these equations:

\[
\begin{align*}
\dot{h}_i &= \frac{(-1 - \delta_3 z_2 A_1 + \delta_1 x_2 v_1) + \sqrt{(-1 - \delta_3 z_2 A_1 + \delta_1 x_2 v_1)^2 + 4 x_2 \delta_1 v_1}}{2 x_2 \delta_1}, \\
\dot{h}_b &= \frac{(-1 - \delta_3 z_2 A_2 + \delta_1 x_2 v_2) + \sqrt{(-1 - \delta_3 z_2 A_2 + \delta_1 x_2 v_2)^2 + 4 x_2 \delta_1 v_2}}{2 x_2 \delta_1}.
\end{align*}
\]

(52) (53)

where \(v_1\) and \(v_2\) are determined by the solution to Eqs. (45) and (48).

2.2.3. Slow timescale dynamics

The final, slow timescale, is where the physiological responses such as ventilation and kidney excretion take effect. To examine the slow dynamics, let us rescale time, defining \(\tau = \epsilon^2 t\). Once again we note that \(n_{12}\) are \(O(\delta_3) = O(10^{4})\), hence we consider each term in turn when approximating to leading order. Thus we have at leading order,

\[
\frac{d\phi_1}{d\tau} = \tilde{\Gamma}_1 (u_2 - \frac{\delta_1}{\delta_3} v_2 - u_1 + \frac{\delta_1}{\delta_3} v_1) + \tilde{\phi}_5 - \frac{\delta_3}{\delta_3} (v_1 - v_2),
\]

(56)

\[
0 = \frac{d\phi_1}{d\tau} + \frac{\delta_1}{\delta_3} \epsilon \tilde{\phi}_5 - \epsilon \tilde{\Gamma}_3 (v_1 - v_2).
\]

(57)

\[
0 = -x_2 \delta_1 h_1^2 + (-1 - \delta_3 z_2 u_1 + \delta_1 x_2 v_1) h_1 + v_1.
\]

(58)

Changing back into our original variables in order to calculate and compare our approximate analytical solution to our numerical solution, the slow solutions (which we will denote as \(W_{\text{slow}}\), follow these equations,

\[
\begin{align*}
\dot{h}_i &= \frac{(-1 - \delta_3 z_2 u_1 + \delta_1 x_2 v_1) + \sqrt{(-1 - \delta_3 z_2 u_1 + \delta_1 x_2 v_1)^2 + 4 x_2 \delta_1 v_1}}{2 x_2 \delta_1}, \\
\dot{h}_b &= \frac{(-1 - \delta_3 z_2 u_2 + \delta_1 x_2 v_2) + \sqrt{(-1 - \delta_3 z_2 u_2 + \delta_1 x_2 v_2)^2 + 4 x_2 \delta_1 v_2}}{2 x_2 \delta_1}.
\end{align*}
\]

(64) (65)

where \(v_1\) and \(v_2\) are defined by the algebraic Eqs. (57), (58), (60) and (61) and \(n_{12}\) are the solutions to the ODEs in Eqs. (56) and (59).

The explicit large time asymptote, steady state, solutions can be readily found, yielding the steady state solutions in our original variables:

\[
\begin{align*}
\tilde{h}_i &= \frac{(-1 - \delta_3 z_2 u_1 + \delta_1 x_2 v_1) + \sqrt{(-1 - \delta_3 z_2 u_1 + \delta_1 x_2 v_1)^2 + 4 x_2 \delta_1 v_1}}{2 x_2 \delta_1}, \\
\tilde{h}_b &= \frac{(-1 - \delta_3 z_2 u_2 + \delta_1 x_2 v_2) + \sqrt{(-1 - \delta_3 z_2 u_2 + \delta_1 x_2 v_2)^2 + 4 x_2 \delta_1 v_2}}{2 x_2 \delta_1}.
\end{align*}
\]

(70) (71)

where \(v_1\) and \(v_2\) are the steady state solutions from the intermediate timescale in Eq. (50) and (51), respectively. Also, \(\dot{u}_1\) and \(\dot{u}_2\) are the steady state solutions of Eqs. (56) and (59).

By extracting the leading order terms with our chosen parameters, we find,

\[
\begin{align*}
\tilde{h}_i &= \frac{(-1 - \delta_3 z_2 u_1 + \delta_1 x_2 v_1) + \sqrt{(-1 - \delta_3 z_2 u_1 + \delta_1 x_2 v_1)^2 + 4 x_2 \delta_1 v_1}}{2 x_2 \delta_1}, \\
\tilde{h}_b &= \frac{(-1 - \delta_3 z_2 u_2 + \delta_1 x_2 v_2) + \sqrt{(-1 - \delta_3 z_2 u_2 + \delta_1 x_2 v_2)^2 + 4 x_2 \delta_1 v_2}}{2 x_2 \delta_1}.
\end{align*}
\]

(72) (73)

(74) (75)

where \(v_1\) and \(v_2\) are the steady state solutions from the intermediate timescale in Eq. (50) and (51), respectively. Also, \(\dot{u}_1\) and \(\dot{u}_2\) are the steady state solutions of Eqs. (56) and (59).

By extracting the leading order terms with our chosen parameters, we find,

\[
\begin{align*}
\tilde{h}_i &= \frac{(-1 - \delta_3 z_2 u_1 + \delta_1 x_2 v_1) + \sqrt{(-1 - \delta_3 z_2 u_1 + \delta_1 x_2 v_1)^2 + 4 x_2 \delta_1 v_1}}{2 x_2 \delta_1}, \\
\tilde{h}_b &= \frac{(-1 - \delta_3 z_2 u_2 + \delta_1 x_2 v_2) + \sqrt{(-1 - \delta_3 z_2 u_2 + \delta_1 x_2 v_2)^2 + 4 x_2 \delta_1 v_2}}{2 x_2 \delta_1}.
\end{align*}
\]

(76)

From Eq. (76) we can see that to leading order, \(\tilde{h}_i\) is proportional to \(\tilde{z}_i\) and inversely proportional to \(\tilde{x}_2\), \(\tilde{\Gamma}_1\), \(\tilde{\Gamma}_3\), and \(\tilde{\phi}_5\). Therefore, lowering the glomerular filtration rate (\(\tilde{z}_i\)) will lower \(H^+\) levels in the tumour. Conversely, raising the acid secretion rate (\(\tilde{\phi}_5\)), carbon dioxide vessel permeability (\(\tilde{\Gamma}_3\)), or bicarbonate vessel permeability (\(\tilde{\Gamma}_1\)) will lower tumour \(H^+\). This expression can tell us about how groups of parameters affect the long time steady-state, and allows us to identify the most important ones. However, quantification of
the relative importance with this expression is difficult, so we will proceed with a formal sensitivity analysis in Section 3.4 after we construct the uniformly valid solution.

2.2.4. Uniformly valid solution

It is now straightforward to construct an approximate uniformly valid solution using our fast, intermediate, and slow solutions from above. This uniform solution has the form:

\[W_{\text{uniform}} = W_{\text{fast}} + W_{\text{intermediate}} + W_{\text{slow}} - W_{\text{fast}} - W_{\text{intermediate}} \]

(77)

where \(W_{\text{fast}}, W_{\text{intermediate}} \) are the quasi-steady state solutions to the \(W_{\text{fast}} \) and \(W_{\text{intermediate}} \) equations, respectively.

2.2.5. Sensitivity analysis

It is important to identify how sensitive the system is to the chosen parameter values. Most importantly, we would like to be able to predict treatments targeting the parameters that have the most pronounced effect on raising tumour pH. In particular, we are most interested in the parameters which have the greatest effect in lowering the steady state tumour pH, as well as how the treatment term can affect the pH of the tumour and the blood. Also, as parameter variations exist naturally between patients, if the system is particularly sensitive to a given parameter it would be important to highlight this system behaviour. As noted, the previously derived analytical approximation can tell us about how groups of parameters affect the long time steady-state, but it is difficult to quantify the relative importance of each individual parameter contribution. Hence, analytical sensitivity values can provide this added information.

One way of examining the effect of a parameter, \(p \), on one of our steady state variables, \(V \), is to calculate a sensitivity coefficient. This can be defined as

\[S_V = \frac{\partial V}{\partial p} \]

(78)

The calculation of this sensitivity coefficient, \(S_V \), tells us what effect a percentage change in the parameter, \(p \), has on the variable, \(V \). If \(|S_V| > 1 \), a percent change in \(p \) produces a larger percent change in \(V \), and thus \(p \) has a strong effect on \(V \).

The analytical value of the sensitivity coefficient was calculated in Maple, and the parameter values were then substituted to obtain the numerical value.

2.2.6. Description of numerical methods

The model Eqs. (9)–(14) were solved using the Matlab stiff ODE solver ode15s, a variable order multistep solver. A stiff solver is necessary due to the multiple timescales in this system, with rapid transient movement of the reaction kinetics, and then slowly varying long transients. Initial conditions were used as in (16) and parameters from Table 1. The simulations were run until \(\tau = 1 \times 10^{10} \) to ensure steady state is reached.

3. Results

3.1. Model validation: comparison of respiratory/metabolic disorders to observed blood pH

In this section we present a set of numerical simulations of Eqs. (9)–(14) to confirm that the model produces qualitatively and quantitatively reasonable and accurate results.

In order to confirm that the mathematical model correctly simulates blood pH, we examine the accuracy of the model in a variety of clinical situations which we can compare to data. In the unperturbed system, the blood pH equilibrates at the normal blood value of 7.4 (see Fig. 2), with blood carbon dioxide and bicarbonate concentrations also at their normal values (non-dimensionalised to 1).

Four disordered states are then simulated: respiratory alkalosis, metabolic alkalosis, respiratory acidosis, and metabolic alkalosis. In our simulations, the respiratory disorders are induced by fixing the ventilation rate, \(\tilde{z}_3(c_0) \), at higher or lower values than normal, thereby changing the blood CO2 levels. Metabolic disorders are induced by altering the blood HCO3 levels by the addition or removal of bicarbonate (\(\phi_1 \)). These results are shown in Figs. 3 and 4. For the respiratory disturbance scenarios, in agreement with experiments which induce patients to hyperventilate or hypoventilate, the ventilation rate is fixed and varied to produce either acidosis or alkalosis. Initially, change in ventilation rate causes a change in blood CO2, which immediately alters the HCO3 and H+ levels. After a few hours the effects of the renal compensation are visible, with the amount of reabsorbed bicarbonate changing to compensate and push the pH back to normal. Both of these simulated disorders match the correct clinically predicted pH and compensation timescale [17]. Simulations of metabolic disorders (acidosis or alkalosis) as a result of persistent administration of bicarbonate (due to bicarbonate loading) or loss of bicarbonate (for example, through vomiting) predict no respiratory compensation, hence blood pH levels do not return to normal.

To compare our results more rigorously with clinical data on acid/base disturbances, a standard buffer curve of the blood pH is constructed. This is accomplished by inducing a respiratory or metabolic disturbance into the model (as described above), and tracking blood pH prior to renal compensation. Although in these simulations we are primarily interested in the blood dynamics, the full coupled model is simulated (blood and tumour). This is reasonable as the tumour of our simulated size has a negligible effect on the blood pH. Simulations we are primarily interested in the blood dynamics, the full coupled model is simulated (blood and tumour). This is reasonable as the tumour of our simulated size has a negligible effect on the blood pH.

The simulated results and clinical buffer curves for humans are shown in Fig. 5. The mathematical model performs well, particularly in predicting the response to metabolic disorders, and also in our range of interest (a normal blood of pH 7.35–7.45). For...
example, the pH changes caused by altering the amount of bicarbonate in the blood (for example, by changing θ_1 as is done in the simulations, or by impaired renal function which could affect F_3 or ξ_1) are shown by the squares in Fig. 5. The resulting curve follows a contour line of constant pCO$_2$ at 40 mm Hg, the normal level, as tight regulation of ventilation prevents any change in CO$_2$ levels. As this model is primarily interested in the effect of adding bicarbonate in this way, the accuracy of the simulations is encouraging.

Alternatively, the pH changes caused by altering the CO$_2$ levels by fixing the ventilation rate, $\xi(C_b)$ (clinically induced via rebreathing CO$_2$ or hyperventilating), follow the triangles in Fig. 5. As shown in the previous section, respiratory disturbances immediately alter blood pH and bicarbonate levels. Eventually, renal compensation occurs (both clinically and in our simulation), which is not shown in this figure as the in vivo studies were performed on a short timescale before compensation could occur.

3.2. Model prediction: effect of respiratory/metabolic disorders on tumour pH

Simulations of respiratory and metabolic disorders indicate that these disordered states can cause significant changes in tumor pH. The model predicts tumor pH is elevated (greater than 7.1 from a normal tumor pH of 7.0) during the conditions of respiratory acidosis and metabolic alkalosis. During states of respiratory alkalosis and metabolic acidosis, tumor pH can be lowered to potentially toxic levels for tumor cells (less than 6.5 from a normal tumor pH of 7.0).
Eqs. (9)–(14) are solved with initial conditions (16) and parameters as in Table 1 but for a normal human. Red squares and triangles represent calculated values when variables to each of the parameters for both mice and humans in the Appendix Table 3.B, which displays the sensitivity of all the variables for each parameter to each of the parameters for both mice and humans in the Appendix Table 3.B, which displays the sensitivity of all the vari-

3.4. Modelling therapy: sensitivity analysis

The full results of the sensitivity analysis are presented in, Appendix Table 3.B, which displays the sensitivity of all the variables to each of the parameters for both mice and humans in the untreated and treated cases. The results are similar for both cases. The human and mouse tumour H⁺ sensitivity coefficients with the largest effect on tumour pHe (selected by an absolute value greater than 1) are shown in Fig. 7. In both humans and mice, the sensitivity coefficients indicate that the most important parameters affecting the tumour pHe are those involved with renal function: bicarbonate clearance and reabsorption. Targeting these processes not only raises the tumour pHe, but also increases the bicarbonate therapy efficacy (simulations not shown).

Other key parameters which most significantly affect tumour pHe are \(\Phi_h \), which incorporates the tumour proton production rate, and the \(pK_a \) parameter \(\Delta_2 \). In humans, the ventilation parameters \(\Delta_1 \) and \(\Delta_2 \) are predicted to be very important, but less so in the mouse. Treatments which target renal parameters \(\xi_2 \) and \(\Phi_2 \), however, also have a strong effect on the blood pHe (see B).

As shown in the previous section, the sensitivity analysis confirms that none of the variables are sensitive to the parameter representing vascular exchange of the protons between tumour and blood, \(\bar{r}_2 \). This suggests that the majority of the removal of protons from the tumour is accomplished via CO₂ evacuation, and not direct movement of free protons. This is reasonable because despite the high proton production of tissues, the actual concentration of free protons in the tissue is very small (several orders of magnitude lower than the respective buffering components). Therefore, by far the majority (ca. ratio of 1 in 10⁷) of protons will exit the tumour attached to a buffer.

Unsurprisingly, the parameter incorporating the kinetics of the bicarbonate reaction, \(\Delta_2 \), is shown as important in this analysis, as altering the ratio of the forward to back reactions (and, therefore, the \(pK_a \) of the reaction), will strongly alter the effect of the buffer.

The sensitivity of the system with respect to the parameters used for its non-dimensionalisation (for example, \(\phi_1 \) and \(\phi_2 \)) is not considered, as these parameters do not have a natural biological interpretation. Hence, as initial conditions in the non-dimen-
Several experimental studies have shown that patients with metabolic acidosis is predicted to reduce tumour pHe from the already acidic levels and significantly increase tumour pHe. However, as treatment targeting these parameters also have a significant effect on blood pHe, any therapy used to adjust kidney function should be undertaken with extreme caution.

Inducing respiratory alkalosis and metabolic alkalosis elevate tumor pHe. Conversely, respiratory alkalosis and metabolic acidosis lower tumor pHe to potentially toxic levels. These predictions confirm the hypothesis that inducing metabolic alkalosis through the chronic administration of buffers such as sodium bicarbonate can elevate tumor pHe to normal levels, which has been verified through in vivo experiments [11]. This normalisation of tumour pHe could help promote the survival and functions of the normal cells, reducing the tumour’s ability to invade. Furthermore, inducing metabolic acidosis is predicted to reduce tumour pHe from the already acidic level, potentially to levels which could be toxic to the tumour cells.

Several experimental studies have shown that patients with metabolic renal cancer benefit from cytoreductive nephrectomy [23–25]. Our model supports the speculation by Gatenby and Gawlinski [4] that the observed benefits are a consequence of potential metabolic acidosis caused from the kidney removal, which could lower tumour pHe to levels toxic to the tumour cells.

In order to identify promising proton reducing targets which could prevent tumour acidity and normalise tumour pHe, a sensitivity analysis of the model was performed and indicates that the tumour pHe is most sensitive to tumour proton production (\(\Phi_1 \)) and renal function parameters (\(\gamma_1 \) and \(\Phi_1 \)), ventilation parameters (\(\Delta_1 \) and \(\Delta_2 \)), and p\(\text{H}_2 \) (\(\Delta_2 \)). By comparison, the mouse is less sensitive to the parameters in general, and in particular much less sensitive to the ventilation parameters (\(\Delta_1 \) and \(\Delta_2 \)). These coefficients were calculated with bicarbonate treatment, values as in Table 1. A table of all the sensitivity coefficients can be found in B. (For interpretation of the references to colours in this figure legend, the reader is referred to the web version of this paper.)

4. Discussion and conclusion

This paper presents a systemic blood and tumour buffering model, which is parameterised with both mouse and human data sets. The model accurately simulates blood pHe in normal and acid/base disordered states. The simulations indicate that respiratory acidosis and metabolic alkalosis elevate tumor pHe. Conversely, respiratory alkalosis and metabolic acidosis lower tumor pHe to potentially toxic levels. These predictions confirm the hypothesis that inducing metabolic acidosis through the chronic administration of buffers such as sodium bicarbonate can elevate tumor pHe to normal levels, which has been verified through in vivo experiments [11]. This normalisation of tumour pHe could help promote the survival and functions of the normal cells, reducing the tumour’s ability to invade. Furthermore, inducing metabolic acidosis is predicted to reduce tumour pHe from the already acidic level, potentially to levels which could be toxic to the tumour cells.

Several experimental studies have shown that patients with metabolic renal cancer benefit from cytoreductive nephrectomy [23–25]. Our model supports the speculation by Gatenby and Gawlinski [4] that the observed benefits are a consequence of potential metabolic acidosis caused from the kidney removal, which could lower tumour pHe to levels toxic to the tumour cells.

In order to identify promising proton reducing targets which could prevent tumour acidity and normalise tumour pHe, a sensitivity analysis of the model was performed and indicates that the tumour pHe is most sensitive to tumour proton production and kidney filtration/reabsorption of bicarbonate. For example, the model predicts that decreasing glomerular filtration rate (GFR) leads to a rise in baseline levels of bicarbonate, and any treatment will not be filtered out as effectively. Similarly, the model predicts increasing the renal acid secretion rate would raise bicarbonate levels and significantly increase tumour pHe. However, as treatments targeting these parameters also have a significant effect on blood pHe, any therapy used to adjust kidney function should be undertaken with extreme caution.

On the other hand, altering tumour proton production, \(\Phi_1 \), has a significant effect on tumour pHe, but virtually no effect on blood pHe, and therefore should be considered a safe option. Any potential therapy which could decrease proton production (such as through inhibiting glycolysis) could be used in combination with bicarbonate to an enhanced effect. Ongoing studies by our research group are currently exploring these possibilities.

There are several important extensions to this model which would improve the accuracy of the predictions. First, more detailed modelling of the contribution of other intrinsic buffering components would strengthen the quantitative predictions of the model. The incorporation of these static tissue buffers would not alter the regulation examined in this model, but do contribute to the overall buffering capacity of the tumour. We have assumed a constant buffering contribution from intrinsic buffers, implicitly included in the proton production term. However, it is likely that the intrinsic buffering capacity of the tumour is pH dependent, and thus would be an important model extension to examine. Currently, the model will most likely overestimate the effect of bicarbonate treatment on both the blood and the tissue. Nevertheless, comparing our mathematical model to in vivo data indicates this model performs well alone.

Secondly, the predictions in this model are based on the assumption that the tumours in humans will have the same vascularity as in mice, which is not necessarily valid in all cases. However, the cell lines used in the mice were human breast cancer cells, thus it is reasonable to assume the cell lines will produce the same amount of pro-angiogenic signals and therefore initiate similar vasculature. Still, the stromal responses might differ in each situation, which highlights the difficulties of using animal models (even with human cell lines) in therapy experimentation. Additionally, vascular heterogeneity within a single tumour will result in variable buffer delivery across the tumour, which will be important to study with advances in functional vessel imaging.

Thirdly, the effects of systemic alkalosis on respiration is controversial, and we have neglected the effect of H+ on ventilation rate for several reasons. Firstly, isolated changes in H+ are mainly sensed by the peripheral chemoreceptors [26], which only contribute a small amount to ventilation. Secondly, respiratory compensation to metabolic alkalosis is controversial [27–29]. Early studies indicated that there was little to no respiratory compensation in humans and dogs [27,28]. Later studies have shown that in some human cases there is respiratory compensation, although the magnitude of compensation is highly variable, and in all cases limited [30]. Even in cases of severe metabolic alkalosis, it is extremely rare to see respiratory compensation raising p\(\text{CO}_2 \) levels above 55 mm Hg from the normal 40 mm Hg [31,32]. There is no concrete evidence surrounding murine respiratory compensation. However, respiratory compensation to metabolic alkalosis is present in some humans. As our model system is sensitive to the ventilation term, the refinement of this term is worth further consideration.

Experimental studies undertaken by our group are currently examining the presence (or absence) of respiratory compensation in mice, which will hopefully elucidate the variability, timing, and extent of this compensation should it occur. These and other experimental results will be used to refine and develop the current model, which can further aid in developing safe and effective anti-tumour therapies.

 Despite the many possible extensions, our simplified model accurately predicts acid–base regulation in the blood and tumour, and can be used to suggest the most promising parameters and processes to target in order to reduce tumour acidity and prolong survival. Novel therapies utilising exogenous buffers or other combinations can be built on this basic framework for future study. Finally, this model could be linked to other cellular models of tumour growth [33,34], and subcellular models of tumour metab-
olism to provide a multiscale model linking pH regulation with tumor invasion.

Acknowledgments

Grant Support NKM: This publication was funded by the National Cancer Institute, NIH grant U56CA113004. PKM: This work was partially supported by a Royal Society–Wolfson Research Merit Award. RAG and PKM: This work was partially supported by NIH grant 1U54CA143970-01. RJG and IR: This work was supported by NIH grant R01 CA 077575.

Appendices A and B Supplementary data

References