Derivation of the bidomain equations for a beating heart with a general microstructure

G. Richardson* and S.J. Chapman†

November 13, 2009

Abstract

A novel multiple scales method is formulated that can be applied to problems which have an almost periodic microstructure not in Cartesian coordinates but in a general curvilinear coordinate system. The method is applied to a model of the electrical activity of cardiac myocytes and used to derive a version of the bidomain equations describing the macroscopic electrical activity of cardiac tissue. The treatment systematically accounts for the non-uniform orientation of the cells within the tissue and for deformations of the tissue occurring as a result of the heart beat.

Keywords: Multiple-scales, homogenization, cardiac myocyte, conductivity, bidomain, deformation.

1 Introduction

The bidomain model for the propagation of cardiac action potentials was formulated in the late 1970’s [1, 14, 4, 17] and is used to describe the evolution of the electrical potential through the cardiac tissue. On a microscopic scale action potentials (pulses in the transmembrane potential) occur as a result of the flow of particular species of ions through ion channels which span the cell membrane. This flow of ions, from the intracellular space to the extracellular space (or vice-versa), is accompanied by a current flow which leads to changes in the charge lying in the Debye layers on either side of the membrane and hence also to the transmembrane potential. The frequency of conformational changes of certain ion channels (i.e. the relative amount of time they spend open or closed) is affected by the transmembrane potential. Action potentials are initiated as a result of this feedback between transmembrane current flow, transmembrane potential and changes in ion-channel conformation. In neurons they propagate as isolated pulses along axons (long dendritic structures branching from the cell body); see, for example, [6]. In contrast, action potentials in cardiac tissue propagate through a fully three-dimensional structure formed by an interconnecting array (or syncytium) of cardiac myocytes.

At various lengthscales different models apply to the phenomena underlying the propagation of action potentials. On the lengthscale of the membrane thickness the electrochemistry of the ion solutions in the intra- and extra-cellular spaces can be described by the Poisson-Nernst-Planck equations (conservation equations for ion concentrations coupled to Poisson’s equation for the electric field). A cell-scale model

*School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK.
†The Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, UK.
for action potential propagation is provided by assuming that current flow in the intra- and extra-cellular electrolytes is approximated by Ohm's Law and charge conservation (this gives Laplace's equation for the electrical potential); that the normal component of electric current density is continuous across the membrane; and that the membrane's electrical properties can be described by a circuit consisting of a linear capacitor and nonlinear resistor connected in parallel. Trans-membrane resistance is determined by the properties of the ion channels spanning the membrane and is usually described by a set of cell-specific phenomenological equations. Thus, for example, squid giant axons are modelled by the Hodgkin-Huxley equations \[6\] whereas the cardiac myocyte membrane could be described by the Beeler-Reuter equations \[2\] or the Luo-Rudy equations \[12\]. A formal derivation of the cell-scale model model from the Poisson-Nernst-Planck equations is made in \[18\].

Action potentials are usually assumed to propagate axially along unmyelinated axons (which are long thin structures) and this leads to a further simplification, in which the three-dimensional cell-scale model is replaced by a one-dimensional Hodgkin-Huxley cable equation, formal justification of which is provided in \[18\]. In the case of cardiac tissue the cell-scale model is replaced by the bidomain equations on the tissue lengthscale.

In \[13\] Krassowska and Neu use an asymptotic multiple-scales method to derive the bidomain equations, from the cell-scale model, in tissue composed of a uniformly oriented periodic array of myocytes, a result which has subsequently been made rigorous in \[16\]. In reality myocytes in cardiac tissue are not uniformly oriented and their long axis is aligned in different directions at different points in the tissue. Furthermore, myocytes deform significantly as the heart beats and a quantitative description of cardiac electrical activity needs to take this into account.

An attempt to generalise the multiple-scales analysis of Krassowska and Neu to a more realistic tissue geometry has been made by Keener & Panfilov in the appendix of \[10\]. They suppose that heart tissue comprises an array of myocytes whose orientation is locally almost periodic but whose axis of orientation changes over the tissue scale. They introduce a set of curvilinear coordinates aligned with the fibres in the tissue, and suppose that in these coordinates the structure of the tissue is periodic. Thus the multiple scales technique can be applied to the new equations in curvilinear coordinates. Finally, after the fast (cell) scale has been averaged out, the reverse coordinate transformation is applied to rewrite the tissue-scale equations (i.e. the bidomain equations) in Cartesian coordinates. It is assumed in \[10\] that the required coordinate transformation is a map that locally rotates coordinates without shearing or stretching them; unfortunately the only such map is a global rotation.

Here we aim to correct this error and formally derive the bidomain equations from the cell-scale model using a more general multiple-scales approach. Because in \[10\] the coordinate transformation is applied before the slow and fast scales are introduced, in effect both the slow and fast scales are transformed, with the result that the slow scale has to be untransformed at the end of the analysis. Here we will only apply the coordinate transformation to the fast scale; in effect we build the coordinate transformation into the multiple scales ansatz in one step rather than two.

Thus we postulate the existence of a transformation from the time-dependent configuration of the heart to a regular “reference” frame (the domain of the curvilinear coordinates) which comprises of a number of periodic boxes each containing one myocyte (or possibly a group of myocytes) and is thus amenable to attack by the method of multiple scales. We allow this transformation to be completely general, including shear and stretch (which we will see are unavoidable) as well as rotation. This will also allow us to consider the effect of the time dependent transformations needed to account for the heart beat.

It is helpful to specify a point within the heart in terms of its position \(\mathbf{r}\) measured with respect to a fixed origin (the Eulerian frame), in terms of its position \(\mathbf{r}'\) in the resting heart (the Lagrangian frame)
and in terms of its position \(x'' \) in the reference frame (see figures 1 and 2). These vectors are related by the transformations

\[
x' = B^{(1)}(x, t) \quad \text{and} \quad x'' = B^{(2)}(x')
\]

so that the map from position vectors \(x \) in the Eulerian frame to those in the reference frame \(x'' \) is given by the composition of the above transformations

\[
x'' = B(x, t) \quad \text{where} \quad B(x, t) = B^{(2)}(B^{(1)}(x, t)). \tag{1}
\]

Despite the lack of a formal derivation of the bidomain equations in non-uniformly oriented tissue there are a number of works (e.g. [15, 20]) which simulate inhomogeneous cardiac tissue using the bidomain model. In these the conductivity tensor is usually assumed to be diagonal in a local frame aligned with the heart fibres, with one conductivity along the fibre direction, and another conductivity orthogonal to the fibre direction. These “axial” and “transverse” conductivities are usually determined experimentally rather than via a homogenisation procedure. The analysis which follows will examine the validity of these assumptions, and give an indication of how the conductivity tensor might be altered by the deformation of the tissue during a heart beat.

2 The model

We will start by writing down the model written in terms of physical coordinates in the standard Eulerian frame.

The membrane (and its Debye layers) act as an electrical capacitor, with the ability to store charge. Furthermore current can pass through ion channels located in the membrane (with a nonlinear current voltage relationship) so that the membrane and Debye layers can be modelled, locally, as a nonlinear resistor in parallel with a capacitor (see figure 3). Globally the membrane is modelled by defining a nonlinear current density–voltage relation \(J(V, t) \) for the resistive flow of current across the membrane due to the ion channels, where \(V \) is the potential drop across the membrane. In addition the capacitative properties of the membrane are modelled as a linear capacitor with capacitance \(C \) per unit area, so that the current density flowing through the capacitor is \(C \frac{dV}{dt} \). Kirchoff’s law states that the total current density flowing through the membrane \(j \) is the sum of the resistive and capacitative components, so that

\[
j = C \frac{dV}{dt} + J(V, t).
\]

The electrolytes on either side of the membrane behave as Ohmic conductors so that their electrical properties are described by

\[
\begin{align*}
\mathbf{j}^{(ex)} &= -\varsigma^{(ex)} \nabla \phi^{(ex)}, & \nabla \cdot \mathbf{j}^{(ex)} &= 0, \\
\mathbf{j}^{(in)} &= -\varsigma^{(in)} \nabla \phi^{(in)}, & \nabla \cdot \mathbf{j}^{(in)} &= 0,
\end{align*}
\]

where \(\mathbf{j} \) is the current density, \(\phi \) is the electric potentials and \(\varsigma \) is the electrical resistivity of the electrolyte. Since the net charge on the capacitor is zero, current flow normal to the membrane must be continuous across the membrane so that

\[
\mathbf{j}^{(in)} \cdot \mathbf{n} |_{\partial \Omega} = \mathbf{j}^{(ex)} \cdot \mathbf{n} |_{\partial \Omega} = j
\]
Figure 1: An illustration of the three frames we use: the Eulerian laboratory frame in which a point is defined by x, its position with respect to a fixed origin, the Lagrangian frame in which a point is defined by x', its position in the resting heart, and the reference frame (with coordinates x'').
Figure 2: An illustration of a typical cell geometry showing the elongated and interconnected myocytes in each of the three frames.
where the superscript (in) denotes the interior region, (ex) denotes the exterior region, and \(n \) is the normal to the membrane surface.

Combining these equations results in the following model for the potentials \(\phi^{(in)} \) and \(\phi^{(ex)} \) in the interior and exterior regions, respectively:

\[
\begin{align*}
\nabla^2 \phi^{(ex)} &= 0 \quad \text{in } \Omega_e, \\
\nabla^2 \phi^{(in)} &= 0 \quad \text{in } \Omega_i, \\
\varsigma^{(ex)}(n \cdot \nabla)\phi^{(ex)}|_{\partial\Omega} &= \varsigma^{(in)}(n \cdot \nabla)\phi^{(in)}|_{\partial\Omega}, \\
\phi^{(in)} - \phi^{(ex)}|_{\partial\Omega} &= V,
\end{align*}
\]

Here we have allowed for the motion of the tissue (with velocity \(U \)) by including the convective derivative and writing

\[
\frac{dV}{dt} = \frac{\partial V}{\partial t} + (U \cdot \nabla)V
\]

A formal derivation of the model, from the underlying Poisson-Nernst-Planck equations, is made in [18].

Nondimensionalisation. We non-dimensionalise using the following scales:

\[
\phi \sim \Phi_0, \quad V \sim \Phi_0, \quad t \sim \tau, \quad x \sim L, \quad \varsigma^{(ex)} \sim \varsigma_0, \quad \varsigma^{(in)} \sim \varsigma_0, \quad J \sim J_0,
\]

where \(\Phi_0 \) is the typical potential drop across the membrane, \(L \) is the typical lengthscale of the cardiac tissue (rather than that of an individual myocyte), \(\varsigma_0 \) is the typical conductivity of the electrolytes and
the typical current density passing through the ion channels spanning the membrane. The result of this non-dimensionalisation is the following dimensionless model
\[\nabla^2 \phi^{(ex)} = 0 \quad \text{in} \quad \Omega_e, \]
\[\nabla^2 \phi^{(in)} = 0 \quad \text{in} \quad \Omega_i, \]
\[\zeta^{(ex)}(n \cdot \nabla)\phi^{(ex)}|_{\partial\Omega} = \zeta^{(in)}(n \cdot \nabla)\phi^{(in)}|_{\partial\Omega}, \]
\[\phi^{(in)} - \phi^{(ex)}|_{\partial\Omega} = V, \]
\[C \left(\frac{\partial V}{\partial t} + (U \cdot \nabla)V \right) = J(V,t) - Z\zeta^{(in)}(n \cdot \nabla)\phi^{(in)}|_{\partial\Omega}. \]

in which the dimensionless parameters are defined by
\[Z = \frac{\zeta_0 \Phi_0}{J_0 L}, \quad C = \frac{\zeta \Phi_0}{\tau J_0}. \]

A further dimensionless parameter of importance is \(\epsilon \) which gives the ratio of the typical lengthscale of cardiac myocytes to that of the cardiac tissue and is thus very small. In the following we shall investigate the distinguished asymptotic limit in which \(C = O(1) \) and \(Z = O(1/\epsilon) \) which is of direct relevance to the action of cardiac muscle.

3 Derivation of the bidomain equations

Given the large number of cardiac myocytes in the heart it is extremely expensive to solve the model (7)-(11) directly. In this section we use the method of multiple scales to derive an averaged (or homogenised) model for the potential, valid over the scale of many myocytes, in the distinguished limit \(\epsilon \ll 1 \), with \(C = O(1) \) and \(Z = O(1/\epsilon) \). The analysis is complicated by the fact that (i) the elongated cardiac myocytes are not uniformly oriented at all positions within the heart and (ii) the heart tissue undergoes significant deformations in the course of the cardiac cycle.

3.1 Coordinates

As mentioned in the introduction, in order to use the method of multiple scales on this problem we introduce a transformation which maps the cardiac myocyte domains (at a general stage in the cardiac cycle) onto a periodic lattice (see figures 1 and 2). Here we consider each box on the lattice to contain one myocyte and the function \(B \) to map the actual configuration (as observed in the real heart tissue at some particular time) to a periodic reference configuration in which each myocyte occupies a box of the same size and geometry. We formalise this transformation by defining \(x \) to be a macroscale variable in the real configuration, which measures distances over many myocytes, and \(y'' = x''/\epsilon \) to be a microscale variable in the periodic reference configuration, which measures distances over the scale of a single myocyte. These variables are related by
\[y'' = \frac{1}{\epsilon} B(x,t). \]

Although they do not present it this way, Keener & Panfilov effectively look for solutions which are functions of \(B(x,t) \) and \(B(x,t)/\epsilon \), imposing the condition that this solution is periodic in \(B(x,t)/\epsilon \). Having derived the homogenised equations for the leading-order solution as a function of \(B(x,t) \) they then need to undo the coordinate transformation to write the equations in terms of \(x \).
In fact, since the multiple scales technique considers the slow and fast scales to be independent, there is no need to transform the slow variable. Instead we look for solutions which are functions of the original macroscale variable x and the transformed microscale variable y'', imposing periodicity in y''.

Spatial derivatives in (7)-(11) transform according to

$$\frac{\partial}{\partial x_i} \rightarrow \frac{\partial}{\partial x_i} + \frac{1}{\epsilon} F_{ij} \frac{\partial}{\partial y''_j}$$

(14)

where x_i and y''_i represent the components of x and y'' in the ith direction, respectively and

$$F_{ij} = \frac{\partial B_j}{\partial x_i}.$$

(15)

It is also helpful to define $\tau = t$ where τ measures times in the moving Lagrangian frame defined by (13) such that

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial \tau} - \frac{1}{\epsilon} U_j F_{jk} \frac{\partial}{\partial y''_k}$$ and \quad $$\frac{\partial}{\partial \tau} = \frac{\partial}{\partial t} + (U \cdot \nabla).$$

(16)

where

$$U_i = \frac{\partial \{B^{-1}\}_i}{\partial t}$$

(17)

is the ith component of the tissue velocity.

At this stage it also helpful to introduce some additional notation to distinguish the boundaries of the domains Ω''_i and Ω''_e in the unit cell. As usual we denote the common boundary between Ω''_i and Ω''_e as $\partial \Omega''$. The boundary of the unit cell which lies in Ω''_i we denote by $\partial V''_i$, while that which lies in Ω''_e we denote by $\partial V''_e$. The unit cells in the Eulerian frame and the reference frame are illustrated in figure 4.

Before we can proceed with the asymptotic expansion of the solution we need to work out how to transform the derivative

$$\frac{\partial}{\partial n} \equiv n \cdot \nabla$$

into multiple scales. To do this we need to determine how the normal n'' in the unit cell reference coordinates relates to the normal n in the real (Eulerian) coordinates.

Suppose that the boundary to a particular myocyte is given, in the reference frame, by the functional relation $\psi(y'') = 0$. The normal to this boundary n'' (again in the reference frame) is then given by

$$n'' = \frac{\nabla'' \psi}{|\nabla'' \psi|},$$

where ∇'' is the vector derivative with respect to the y'' variable. The normal in the reference frame is, of course, not equal to the normal n in the Eulerian frame. However we can relate the two normals by transforming variables from y'' to x in the function ψ and noting that

$$n = \frac{\nabla \psi}{|\nabla \psi|}$$

where here ∇ is the vector derivative with respect to x. The transformation of variables implies that

$$\frac{\partial \psi}{\partial x_i} = \frac{1}{\epsilon} F_{ij} \frac{\partial \psi}{\partial y''_j}$$

8
Figure 4: The geometry of the unit cell in (I) the Eulerian frame and (II) the reference frame. The intracellular and extracellular domains are indicated, along with the transmembrane current \(J \) and the normals \(\mathbf{n} \) and \(\mathbf{n}'' \).

and hence that

\[
\mathbf{n} = \frac{F_{ij} \frac{\partial \phi}{\partial y_j}}{(F_{mk}F_{ml} \frac{\partial \phi}{\partial y_l} \frac{\partial \phi}{\partial y_k})^{1/2}} \mathbf{e}_i \quad \text{whereas} \quad \mathbf{n}'' = \frac{\frac{\partial \phi}{\partial y_j}}{(\frac{\partial \phi}{\partial y_m} \frac{\partial \phi}{\partial y_m})^{1/2}} \mathbf{e}_i.
\]

Here \(\mathbf{e}_i \) is the unit vector in the direction of the \(i \)th coordinate and we use the Einstein summation convention. It follows that the components of \(\mathbf{n} \) and \(\mathbf{n}'' \) are related by

\[
n_i = F_{ij} n_j'' \left(\frac{\frac{\partial \phi}{\partial y_j} \frac{\partial \phi}{\partial y_j}}{(F_{pq}F_{pr} \frac{\partial \phi}{\partial y_q} \frac{\partial \phi}{\partial y_r})^{1/2}} \right)^{1/2},
\]

and hence that

\[
n_i = F_{ij} n_j'' \frac{1}{(F_{pq}F_{pr} n_q'' n_r'')^{1/2}}.
\]

We note that in the special case where \(F \) is a rotation matrix it is also an orthogonal matrix and so has the property \(FF^T = F^T F = I \) (in component notation \(F_{ik}F_{jk} = \delta_{ij} \) and \(F_{ki}F_{kj} = \delta_{ij} \)). From this it follows that (18) simplifies to

\[
n_i = F_{ij} n_j''.
\]

In other words the normal in the Eulerian frame is just the normal in the reference frame rotated by the matrix \(F \).
3.2 The multiple-scales expansion

We look for a solution to (7)-(11) of the form \(\phi = \phi(y'', x) \) which is periodic in \(y'' \). We start by writing (7)-(11) in terms of the multiple scale transformation of the derivatives (14) using (18) to rewrite (11) in terms of \(n'' \). On writing \(Z = \Theta/\epsilon \), where \(\Theta \) is an \(O(1) \) parameter, this gives

\[
\frac{\partial^2 \phi^{(in)}}{\partial x_i^2} + \frac{1}{\epsilon} \left(F_{ij} \frac{\partial^2 \phi^{(in)}}{\partial y_j \partial y^2_i} + \frac{\partial}{\partial x_i} \left(F_{ij} \frac{\partial \phi^{(in)}}{\partial y_j} \right) + \frac{1}{\epsilon^2} F_{ij} F_{ik} \frac{\partial^2 \phi^{(in)}}{\partial y_j \partial y_k} \right) = 0 \quad \text{for} \quad y'' \in \Omega''_i, \tag{19}
\]

\[
\frac{\partial^2 \phi^{(ex)}}{\partial x_i^2} + \frac{1}{\epsilon} \left(F_{ij} \frac{\partial^2 \phi^{(ex)}}{\partial x_i \partial y_j} + \frac{\partial}{\partial x_i} \left(F_{ij} \frac{\partial \phi^{(ex)}}{\partial y_j} \right) + \frac{1}{\epsilon^2} F_{ij} F_{ik} \frac{\partial^2 \phi^{(ex)}}{\partial y_j \partial y_k} \right) = 0 \quad \text{for} \quad y'' \in \Omega''_e, \tag{20}
\]

\[
\zeta^{(ex)} F_{pm} n''_m \left(\frac{\partial \phi^{(ex)}}{\partial x_p} + \frac{1}{\epsilon} F_{pq} \frac{\partial \phi^{(in)}}{\partial y_q} \right) \bigg|_{\partial \Omega''} = \zeta^{(in)} F_{pm} n''_m \left(\frac{\partial \phi^{(in)}}{\partial x_p} + \frac{1}{\epsilon} F_{pq} \frac{\partial \phi^{(in)}}{\partial y_q} \right) \bigg|_{\partial \Omega''}, \tag{21}
\]

\[
\frac{\partial \phi^{(in)}}{\partial x_i} \bigg|_{\partial \Omega''} = V, \tag{22}
\]

\[
e^2 C \frac{\partial V}{\partial \tau} = e^2 J - \Theta \zeta^{(in)} \left(\frac{\partial \phi^{(in)}}{\partial y''} + \epsilon \frac{\partial \phi^{(in)}}{\partial x} \right) \frac{F_{pm} n''_m}{(F_{pq} n''_m (n''_m))^2} \bigg|_{\partial \Omega''}. \tag{23}
\]

We now look for an asymptotic solution to (19)-(23) in powers of \(\epsilon \) of the form

\[
\phi^{(in)} = \phi^{(in)}_0(x, t) + \epsilon \phi^{(in)}_1(y'', x, t) + \epsilon^2 \phi^{(in)}_2(y'', x, t) + \cdots, \tag{24}
\]

\[
\phi^{(ex)} = \phi^{(ex)}_0(x, t) + \epsilon \phi^{(ex)}_1(y'', x, t) + \epsilon^2 \phi^{(ex)}_2(y'', x, t) + \cdots, \tag{25}
\]

\[
V = V_0(x, t) + \cdots, \tag{26}
\]

\[
J = J_0 + \cdots. \tag{27}
\]

The first-order problem for \(\phi \). After substituting (24)-(27) into (19)-(23) we find that the leading-order equations are satisfied trivially due to our assumption that \(\phi^{(in)}_0 \) and \(\phi^{(ex)}_0 \) are independent of \(y'' \). At first-order in \(\epsilon \) we find the following linear system for \(\phi^{(in)}_1 \):

\[
F_{ij} F_{ik} \frac{\partial^2 \phi^{(in)}_1}{\partial y_j \partial y_k} = 0 \quad \text{for} \quad y'' \in \Omega''_i, \tag{28}
\]

\[
F_{ij} F_{ik} n''_j \frac{\partial \phi^{(in)}_1}{\partial y_k} \bigg|_{\partial \Omega''} = -F_{ij} n''_j \frac{\partial \phi^{(in)}_0}{\partial x_i}, \tag{29}
\]

\[
\phi^{(in)}_1 \text{ periodic in } y''.
\]

In a similar fashion we can write down an almost identical problem for \(\phi^{(ex)} \) using (20), (21) and (23); this is

\[
F_{ij} F_{ik} \frac{\partial^2 \phi^{(ex)}_1}{\partial y_j \partial y_k} = 0 \quad \text{for} \quad y'' \in \Omega''_e, \tag{29}
\]

\[
F_{ij} F_{ik} n''_j \frac{\partial \phi^{(ex)}_1}{\partial y_k} \bigg|_{\partial \Omega''} = -F_{ij} n''_j \frac{\partial \phi^{(ex)}_0}{\partial x_i}, \tag{29}
\]

\[
\phi^{(ex)}_1 \text{ periodic in } y''.
\]

Recall that \(n'' \) is the outward normal to \(\Omega'' \) and the inward normal to \(\Omega''_e \).
A solvability condition. Integrating the divergence of an arbitrary vector function \(T^{(in)} \) over the domain \(\Omega'' \) and applying the divergence theorem gives
\[
\int_{\Omega''} \frac{\partial T_j^{(in)}}{\partial y_j''} \, dV'' = \int_{\partial \Omega''} T_j^{(in)} n_j'' \, dS'' + \int_{\partial \Omega''} T_i^{(in)} n_i'' \, dS''.
\]
If \(T^{(in)} \) is periodic in \(y'' \) the last term is identically zero so that
\[
\int_{\Omega''} \frac{\partial T_j^{(in)}}{\partial y_j''} \, dV'' = \int_{\partial \Omega''} T_j^{(in)} n_j'' \, dS''. \tag{30}
\]
Equivalently (for a periodic vector \(T^{(ex)} \)) we can write (on noting that \(n'' \) is the inward normal to \(\Omega'' \))
\[
\int_{\Omega''} \frac{\partial T_j^{(ex)}}{\partial y_j''} \, dV'' = -\int_{\partial \Omega''} T_j^{(ex)} n_j'' \, dS''. \tag{31}
\]
Now, problems (28)-(29) can be expressed in the form
\[
\frac{\partial T_j^{(in)}}{\partial y_j''} = 0 \quad \text{for } y'' \in \Omega'', \quad T_j^{(in)} n_j'' \bigg|_{\partial \Omega''} = 0, \tag{32}
\]
with \(T^{(in)} \) and \(T^{(ex)} \) periodic in \(y'' \), where
\[
T_j^{(in)} = F_{ij} \left(F_{ik} \frac{\partial \phi_0^{(in)}}{\partial y_k'} + \frac{\partial \phi_0^{(in)}}{\partial x_i} \right), \quad T_j^{(ex)} = F_{ij} \left(F_{ik} \frac{\partial \phi_0^{(ex)}}{\partial y_k'} + \frac{\partial \phi_0^{(ex)}}{\partial x_i} \right).
\]
Substituting (32a) and (32b) into the solvability conditions (30) and (31), respectively, we see that these solvability conditions are satisfied trivially. At the next order the corresponding solvability conditions will result in the bidomain equations.

We can write the solutions to (28) and (29) as
\[
\phi_1^{(in)} = \sum_{r=1}^{3} \frac{\partial \phi_0^{(in)}}{\partial x_r} \Xi_r^{(in)}(y'') + A^{(in)}(x,t), \quad \phi_1^{(ex)} = \sum_{r=1}^{3} \frac{\partial \phi_0^{(ex)}}{\partial x_r} \Xi_r^{(ex)}(y'') + A^{(ex)}(x,t), \tag{33}
\]
where \(A^{(in)}(x,t) \) and \(A^{(ex)}(x,t) \) are arbitrary functions of integration and the functions \(\Xi_r^{(in)}(y'') \) and \(\Xi_r^{(ex)}(y'') \) \((r = 1, 2, 3) \) satisfy the cell problems
\[
F_{ij} F_{ik} \frac{\partial^2 \Xi_r^{(in)}}{\partial y_j' \partial y_k'} = 0 \quad \text{for } y'' \in \Omega'', \quad F_{ij} F_{ik} n_j'' \frac{\partial \Xi_r^{(in)}}{\partial y_k'} \bigg|_{\partial \Omega''} = -F_{rq} n_q'', \tag{34}
\]
\(\Xi_r^{(in)} \) periodic in \(y'' \).

and
\[
F_{ij} F_{ik} \frac{\partial^2 \Xi_r^{(ex)}}{\partial y_j' \partial y_k'} = 0 \quad \text{for } y'' \in \Omega'', \quad F_{ij} F_{ik} n_j'' \frac{\partial \Xi_r^{(ex)}}{\partial y_k'} \bigg|_{\partial \Omega''} = -F_{rq} n_q'', \tag{35}
\]
\(\Xi_r^{(ex)} \) periodic in \(y'' \).
The second-order problem for ϕ. Proceeding to second order in the expansion of (19)-(23) leads to the following problem for $\phi^{(in)}_2$ and $\phi^{(ex)}_2$:

$$F_{ij} F_{ik} \frac{\partial^2 \phi^{(in)}_i}{\partial y_j \partial y_k} + 2 F_{ij} \frac{\partial \phi^{(in)}_i}{\partial x_j} \frac{\partial y_j}{\partial y_k} + \frac{\partial F_{ij}}{\partial y_j} \frac{\partial \phi^{(in)}_i}{\partial x_k} + \frac{\partial^2 \phi^{(in)}_i}{\partial x_i^2} = 0 \quad \text{for } y'' \in \Omega_i, \quad (36)$$

$$\Theta^{(in)} \left(F_{ij} F_{ik} n_j'' \frac{\partial \phi^{(in)}_i}{\partial y_k'} + F_{ij} n_j'' \frac{\partial \phi^{(in)}_i}{\partial x_i} \right) \bigg|_{y''} = \left(F_{lk} F_{lk} n_k'' n_k'' \right)^{1/2} \left(J_0 - C \frac{\partial V_0}{\partial t} \right), \quad (37)$$

$$\Theta^{(ex)} \left(F_{ij} F_{ik} n_j'' \frac{\partial \phi^{(ex)}_i}{\partial y_k'} + F_{ij} n_j'' \frac{\partial \phi^{(ex)}_i}{\partial x_i} \right) \bigg|_{y''} = \left(F_{lk} F_{lk} n_k'' n_k'' \right)^{1/2} \left(J_0 - C \frac{\partial V_0}{\partial t} \right), \quad (39)$$

$$\phi^{(in)}_0 - \phi^{(ex)}_0 \bigg|_{y''} = V_0, \quad (40)$$

with $\phi^{(in)}_2$ and $\phi^{(ex)}_2$ periodic in y''.

A solvability condition on the second-order problem. Equations (36)-(39) can be rewritten in the form

$$\frac{\partial T^{(in)}_j}{\partial y_j'} = - \frac{\partial}{\partial x_i} \left(F_{ij} \frac{\partial \phi^{(in)}_i}{\partial y_j'} + \frac{\partial \phi^{(in)}_0}{\partial x_i} \right) \quad \text{for } y'' \in \Omega_i, \quad (41)$$

$$\Theta^{(in)} T^{(in)}_j n_j'' \bigg|_{y''} = \left(F_{pq} F_{pr} n_q'' n_r'' \right)^{1/2} \left(J_0 - C \frac{\partial V_0}{\partial t} \right), \quad (42)$$

$$\frac{\partial T^{(ex)}_j}{\partial y_j'} = - \frac{\partial}{\partial x_i} \left(F_{ij} \frac{\partial \phi^{(ex)}_i}{\partial y_j'} + \frac{\partial \phi^{(ex)}_0}{\partial x_i} \right) \quad \text{for } y'' \in \Omega_e, \quad (43)$$

$$\Theta^{(ex)} T^{(ex)}_j n_j'' \bigg|_{y''} = \left(F_{pq} F_{pr} n_q'' n_r'' \right)^{1/2} \left(J_0 - C \frac{\partial V_0}{\partial t} \right), \quad (44)$$

where

$$T^{(in)}_j = F_{ij} \left(F_{ik} \frac{\partial \phi^{(in)}_i}{\partial y_k'} + \frac{\partial \phi^{(in)}_0}{\partial x_i} \right), \quad T^{(ex)}_j = F_{ij} \left(F_{ik} \frac{\partial \phi^{(ex)}_i}{\partial y_k'} + \frac{\partial \phi^{(ex)}_0}{\partial x_i} \right).$$

Applying the conditions (30) and (31) to $T^{(in)}_j$ and $T^{(ex)}_j$, and recalling that $\phi^{(in)}_i$ and $\phi^{(ex)}_i$ are given in terms of $\phi^{(in)}_0$ and $\phi^{(ex)}_0$ by (33), we arrive at the following solvability condition on $\phi^{(in)}_0(x,t)$ and $\phi^{(ex)}_0(x,t)$:

$$\frac{\partial}{\partial x_p} \left(\kappa^{(in)}_{pr} \frac{\partial \phi^{(in)}_0}{\partial x_r} \right) = - S \left(J_0 - C \left(\frac{\partial V_0}{\partial t} + (U \cdot \nabla)V_0 \right) \right), \quad (45)$$

$$\frac{\partial}{\partial x_p} \left(\kappa^{(ex)}_{pr} \frac{\partial \phi^{(ex)}_0}{\partial x_r} \right) = S \left(J_0 - C \left(\frac{\partial V_0}{\partial t} + (U \cdot \nabla)V_0 \right) \right), \quad (46)$$

$$V_0 = \phi^{(in)}_0 - \phi^{(ex)}_0, \quad (47)$$

12
where

\[S = \frac{1}{V''} \int_{\partial \Omega''} (F_{ij} F_{ik} n''_i n''_k)^{1/2} \, dS'' \] (48)

and the intracellular and extracellular conductivity tensors are defined by

\[\kappa^{(in)}_{pr} = \frac{\Theta \xi^{(in)}_{pr}}{V''} \left(\int_{\Omega''} \delta_{pr} + F_{pj} \frac{\partial \Xi^{(in)}_j}{\partial y_j''} \, dV'' \right), \] (49)

\[\kappa^{(ex)}_{pr} = \frac{\Theta \xi^{(ex)}_{pr}}{V''} \left(\int_{\Omega''} \delta_{pr} + F_{pj} \frac{\partial \Xi^{(ex)}_j}{\partial y_j''} \, dV'' \right), \] (50)

respectively, where \(V'' = \int_{\Omega''} dV'' + \int_{\Omega''} dV''' \) is the volume of the unit cell in the reference domain and \(\Xi^{(in)}_m \) and \(\Xi^{(ex)}_m \) are the solutions to the cell problems (34) and (35). Equations (45)-(47) are the widely applied bidomain equations, proposed in [5].

3.3 Comparison with Keener & Panfilov

Keener & Panfilov [10] consider a network of myocytes, and transform to a local curvilinear coordinate system in which one coordinate is aligned with the fibre orientation. This is equivalent to our map \(x'' = B(x') \). They assume that this curvilinear coordinate system is orthogonal and stretch free, that is, they consider a geometry in which the transformation of coordinates from the reference configuration (a regular lattice of myocytes) to the actual configuration is everywhere a rotation. In terms of the transformation matrix defined in (15) this is equivalent to requiring that the transpose of \(F \) is its inverse (i.e. \(F_{ij} F_{ik} = \delta_{ik} \)). They make a transformation to the reference frame and then perform a multiple-scales analysis analogous to that performed by Neu and Krassowska [13] on a regular lattice of myocytes. However we believe [10] contains a couple of typographical errors. In particular the transformation of derivatives, given in (28), is wrong (it should read \(\nabla_x = T^T (x) \nabla_y \) and the definition of the curvature vector, given below (29), is incorrect (it should read \(\kappa_j = \partial T_{ij} / \partial x_i \)). If we correct for these errors in their analysis we find that their final result (55) should read (where \(F = T^T \))

\[\frac{\partial}{\partial x_j} \left(\sigma_{jk}^{(in)} \frac{\partial \phi}{\partial x_k} \right) = \frac{\epsilon}{V''} \int_{\partial \Omega''} I_m \, dS, \quad \frac{\partial}{\partial x_j} \left(\sigma_{jk}^{(ex)} \frac{\partial \phi}{\partial x_k} \right) = -\frac{\epsilon}{V''} \int_{\Omega''} I_m \, dS \] (51)

where

\[\sigma_{jk}^{(in)} = F_{ji} \xi_{im}^{(in)} F^T_{mk}, \quad \sigma_{jk}^{(ex)} = F_{ji} \Sigma_{im}^{(ex)} F^T_{mk}, \] (52)

and

\[\Sigma_{ij}^{(in)} = \frac{\epsilon}{r_c V''} \int_{\Omega''} \left(\frac{\partial W_{ij}^{(in)}}{\partial z_i} + \delta_{ij} \right) \, dV, \quad \Sigma_{ij}^{(ex)} = \frac{\epsilon}{r_c V''} \int_{\Omega''} \left(\frac{\partial W_{ij}^{(ex)}}{\partial z_i} + \delta_{ij} \right) \, dV. \] (53)

In the case of a rotational transformation, with the property \(F_{ij} F_{ik} = \delta_{ik} \), and where we identify \(\sigma^{(in)} \) with \(\kappa^{(in)} \), \(\sigma^{(ex)} \) with \(\kappa^{(ex)} \), \(z_i \) with \(y_i'' \), \(W_{ij}^{(in)} \) with \(\Xi^{(in)}_i F_{ij} \), \(W_{ij}^{(ex)} \) with \(\Xi^{(ex)}_i F_{ij} \), \(\epsilon / r_c \) with \(\zeta^{(in)} \) (and \(\zeta^{(ex)} \)) and \(I_m \) with \((G \frac{\partial W}{\partial r} - J) / (\epsilon \Theta) \) this is identical to our result (45)-(47).

The form of \(\sigma_{jk} \) above is superficially appealing, since the transformation \(F_{ij} \) appears in a natural way in (52). However, this hides the fact that, except in the particular case that \(F_{ij} F_{ik} = \delta_{ik} \), the matrix \(F_{ij} \) also appears in the the cell problem for \(W_{ij} \). As noted earlier, the only maps with this property everywhere are global rotations and translations.
3.4 Eulerian interpretation of the conductivity tensors and surface integral

The cell problems (34)-(35) in reference coordinates involve a relatively unpleasant equation (a general constant-coefficient second-order elliptic operator) on a nice geometry (rectangular periodic). Here we show that these problems can be transformed to an Eulerian frame in which the equation is nice (Laplace’s equation), but the geometry is unpleasant (the unit cell is stretched, sheared and rotated). Although not especially useful for calculating the conductivities, the Eulerian description confirms the intuitively appealing result that the homogenised conductivity tensors at a point may be determined by taking the locally (periodic) structure, extending it to be globally periodic and homogenising via multiple scales. The problem with using this method to calculate the conductivities is that the locally periodic structure varies from place to place and is changing in time with the beating of the heart. It is as complicated (if not more complicated) to calculate the effect of this variation on the unit cell than it is to vary the coefficients $F_{ij}F_{ik}$ in (34)-(35).

The conductivities We start by transforming the cell problem (34)-(35) to the Eulerian microscale variable $y = x/\epsilon$. We use the relations that
\[
\frac{\partial}{\partial y_j'} = F_{js}^{-1} \frac{\partial}{\partial y_s}, \quad n''_j = F_{js}^{-1} n_s (F_{qr} F_{pr} n''_q n''_r)^{1/2}, \quad dV'' = |\det(F_{ij})| dV
\]
to rewrite (49) and (50) in the form
\[
\Theta\varsigma^{(in)}(\alpha) \frac{\partial^2 \Xi^{(in)}}{\partial y_p \partial y_p} = 0 \quad \text{for} \quad y \in \Omega_i, \quad n_s \left. \frac{\partial \Xi^{(in)}}{\partial y_s} \right|_{\partial \Omega} = -n_{\alpha},
\]
\[
\Theta\varsigma^{(ex)}(\alpha) \frac{\partial^2 \Xi^{(ex)}}{\partial y_p \partial y_p} = 0 \quad \text{for} \quad y \in \Omega_e, \quad n_s \left. \frac{\partial \Xi^{(ex)}}{\partial y_s} \right|_{\partial \Omega} = -n_{\alpha},
\]
with $\Xi^{(in)}$ and $\Xi^{(ex)}$ periodic in y. This superficially simpler formulation masks the fact that the domains Ω_i and Ω_e have been sheared, stretched and rotated by comparison to the rectangular grid of the reference frame, and that this deformation varies in space and may change with time due to the beating of the heart (see figure 4).

The surface integral S. We first note that, for any vector p,
\[
\frac{1}{\mathcal{V}} \int_{\partial\Omega} p_i n_i dS = \frac{1}{\mathcal{V}} \int_{\Omega} \frac{\partial p_i}{\partial y_i} dV = \frac{1}{\mathcal{V}''} \int_{\Omega''} F_{ij} \frac{\partial p_i}{\partial y_j} dV'' = \frac{1}{\mathcal{V}''} \int_{\partial\Omega''} F_{ij} p_i n''_j dS''.
\]
Then, with $p_i = n_i$

$$\frac{1}{V''} \int_{\partial \Omega''} n_i F_{ij} n''_j dS'' = \frac{1}{V} \int_{\partial \Omega} n_i n_i dS.$$

Using (18) to re-express $F_{ij} n''_j$ as $(F_{ir} F_{ls} n''_r n''_s)^{1/2} n_i$ in the above formula, it is found that

$$S = \frac{1}{V''} \int_{\partial \Omega''} (F_{ir} F_{ls} n''_r n''_s)^{1/2} dS'' = \frac{1}{V} \int_{\partial \Omega} dS.$$

Thus we see that physically S is the dimensionless surface area of the myocyte within a periodic cell divided by the dimensionless volume of the cell.

4 Summary and conclusions

We have investigated the derivation of the bidomain equations for the electrical activity of the heart from an underlying microscale model for the electrical activity of cardiac myocytes. This problem has been previously tackled by Krassowska & Neu [13] in the scenario of a uniformly oriented microstructure, and by Keener & Panfilov [10] for a restricted class of nonuniform geometries (global rotations). Our goal was to generalise their approach to the non-uniform geometries encountered in real cardiac tissue and to set up a framework capable of describing electrical activity in deforming tissue, such as encountered in a beating heart. In order to tackle the non-uniform geometry we adapted the multiple-scales method to problems in which the microscale cell problem is almost periodic but exhibits sizeable variations in the shape, size and orientation of the cells over the macroscale. The result of our multiple scales analysis was a bidomain model in which the conductivity tensors vary in space (as the orientation of the myocytes change) and in which the source terms in the bidomain equations, associated with transmembrane current flow and membrane capacitance, vary as a function of the membrane surface area per unit volume.1

Our approach involved an adaptation of the multiple scales technique in which the fast variable is chosen to make the microstructure regular, but the slow variable is the usual Cartesian coordinate. This approach is applicable to other multiple scales problems in which the microstructure is periodic in some general curvilinear coordinates, but in which the homogenised equation is desired in Cartesian coordinates.

There are a number of ways to present the bidomain model we derive and we summarise these briefly here. Dropping the subscript 0 for clarity, the equations are

$$\frac{\partial}{\partial x_p} \left(r^{(in)}_{pr} \frac{\partial \phi^{(in)}}{\partial x_r} \right) = -S \left(J - C \left(\frac{\partial V}{\partial t} + (U \cdot \nabla) V \right) \right), \quad (57)$$

$$\frac{\partial}{\partial x_p} \left(r^{(ex)}_{pr} \frac{\partial \phi^{(ex)}}{\partial x_r} \right) = S \left(J - C \left(\frac{\partial V}{\partial t} + (U \cdot \nabla) V \right) \right), \quad (58)$$

$$V = \phi^{(in)} - \phi^{(ex)}, \quad (59)$$

where the myocyte surface area to volume ratio is

$$S = \frac{1}{V} \int_{\partial \Omega} dS = \frac{1}{V''} \int_{\partial \Omega''} (F_{ir} F_{ls} n''_r n''_s)^{1/2} dS''.$$

1If the cell surface dilates (increasing S) as the result of elastic deformation of the heart the transmembrane current density J is expected to decrease in proportion to $1/S$ since the number of ion channels in the membrane of an individual cell is fixed.
The conductivity tensors \(\kappa_{pr}^{(in)} \) and \(\kappa_{pr}^{(ex)} \) may be written

\[
\kappa_{pr}^{(in)} = \frac{\Theta \varsigma^{(in)}}{\mathcal{V}^n} \left(\int_{\Omega^i} \delta_{pr} + F_{pj} \frac{\partial \Xi_{r}^{(in)}}{\partial y_j^n} dV'' \right),
\]

\[
\kappa_{pr}^{(ex)} = \frac{\Theta \varsigma^{(ex)}}{\mathcal{V}^n} \left(\int_{\Omega^i} \delta_{pr} + F_{pj} \frac{\partial \Xi_{r}^{(ex)}}{\partial y_j^n} dV'' \right),
\]

where \(\Xi \) satisfies the cell problems

\[
F_{ij} F_{ik} \frac{\partial^2 \Xi^{(in)}_r}{\partial y_j^n \partial y_k^n} = 0 \quad \text{for} \quad y'' \in \Omega^i, \quad F_{ij} F_{ik} n_j \frac{\partial \Xi^{(in)}_r}{\partial y_k^n} \bigg|_{\partial \Omega^i} = -F_{pq} n_q^n,
\]

\(\Xi^{(in)}_r \) periodic in \(y''. \)

and

\[
F_{ij} F_{ik} \frac{\partial^2 \Xi^{(ex)}_r}{\partial y_j^n \partial y_k^n} = 0 \quad \text{for} \quad y'' \in \Omega^i, \quad F_{ij} F_{ik} n_j \frac{\partial \Xi^{(ex)}_r}{\partial y_k^n} \bigg|_{\partial \Omega^i} = -F_{pq} n_q^n,
\]

\(\Xi^{(ex)}_r \) periodic in \(y''. \)

Alternatively, they may be written as

\[
\kappa_{pr}^{(in)} = \frac{\Theta \varsigma^{(in)}}{\mathcal{V}^n} F_{pj} \left(\int_{\Omega^i} \delta_{jk} + \frac{\partial W^{(in)}_r}{\partial y_j^n} dV'' \right) F_{kr}^{-1},
\]

\[
\kappa_{pr}^{(ex)} = \frac{\Theta \varsigma^{(ex)}}{\mathcal{V}^n} F_{pj} \left(\int_{\Omega^i} \delta_{jk} + \frac{\partial W^{(ex)}_r}{\partial y_j^n} dV'' \right) F_{kr}^{-1},
\]

where \(W \) satisfies the cell problems

\[
F_{ij} F_{ik} \frac{\partial^2 W_r}{\partial y_j^n \partial y_k^n} = 0 \quad \text{for} \quad y'' \in \Omega^i, \quad F_{ij} F_{ik} n_j \frac{\partial W_r}{\partial y_k^n} \bigg|_{\partial \Omega^i} = -F_{pq} F_{pr} n_q^n,
\]

\(W \) periodic in \(y''. \)

and

\[
F_{ij} F_{ik} \frac{\partial^2 W_r}{\partial y_j^n \partial y_k^n} = 0 \quad \text{for} \quad y'' \in \Omega^i, \quad F_{ij} F_{ik} n_j \frac{\partial W_r}{\partial y_k^n} \bigg|_{\partial \Omega^i} = -F_{pq} F_{pr} n_q^n,
\]

\(W \) periodic in \(y''. \)

In both cases the geometry of the unit cell is rectangular since it is described in terms of the reference variable \(y'' \).

Alternatively we may write

\[
\kappa_{pr}^{(in)} = \frac{\Theta \varsigma^{(in)}}{\mathcal{V}} \left(\int_{\Omega^i} \delta_{pr} + \frac{\partial \Xi^{(in)}_r}{\partial y_p} dV \right),
\]

\[
\kappa_{pr}^{(ex)} = \frac{\Theta \varsigma^{(ex)}}{\mathcal{V}} \left(\int_{\Omega^i} \delta_{pr} + \frac{\partial \Xi^{(ex)}_r}{\partial y_p} dV \right),
\]
where Ξ satisfies the Eulerian cell problems
\[
\frac{\partial^2 \Xi_{\alpha}^{(in)}}{\partial y_p \partial y_p} = 0 \quad \text{for} \quad y \in \Omega, \quad n_s \frac{\partial \Xi_{\alpha}^{(in)}}{\partial y_s} \bigg|_{\partial \Omega} = -n_\alpha,
\]
\[
\frac{\partial^2 \Xi_{\alpha}^{(ex)}}{\partial y_p \partial y_p} = 0 \quad \text{for} \quad y \in \Omega_e, \quad n_s \frac{\partial \Xi_{\alpha}^{(ex)}}{\partial y_s} \bigg|_{\partial \Omega} = -n_\alpha.
\]

In this case the unit cell has been sheared, stretched and rotated by comparison to rectangular Cartesian coordinates (through the map $x' = B(x,t)$), which is where the local geometry of the microstructure comes into play.

The presence of the tensor F_{ij} in the cell problems above is unfortunate, since it means that we cannot solve a single cell problem to find the effective conductivities (remember that F_{ij} is a function of x). Instead a numerical procedure such as the heterogeneous multiscale method [3] would need to be employed, with a cell problem solved for each element of a finite element implementation of the bidomain equations.

This leads to the natural question of whether an ad hoc approximation could be made in which the conductivities are assumed to be of the form
\[
\kappa_{pr}^{(in)} = F_{pj} \Sigma_{jk}^{(in)} F^{-1}_{kr}, \quad \kappa_{pr}^{(ex)} = F_{pj} \Sigma_{jk}^{(ex)} F^{-1}_{kr},
\]
with $\Sigma_{jk}^{(in)}$ and $\Sigma_{jk}^{(ex)}$ constant and independent of position. Such an approximation may not be so bad, since the fact that the conductivities along a fibre and across a fibre are so different may mean that the rotation of the fibre is the dominant effect, with shear and stretch being secondary. It will be interesting to solve the cell problems (63)-(64) or (67)-(68) numerically for representative geometries to evaluate the validity of this assumption. For a general deformation this approximation will need to be combined with an extraction of the relevant rotational component of F_{ij} by decomposing B into sequential stretches, shear across the fibre direction, and rotations.

References

