The Mathematical Institute, University of Oxford, Eprints Archive

Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering

Spannuth, M. J. and Mochrie, S. G. J. and Peppin, S. S. L. and Wettlaufer, J. S. (2010) Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering. Physical Review E. . (Submitted)



During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle X-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by any standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium or steady-state densification processes.

Item Type:Article
Subjects:D - G > General
Research Groups:Oxford Centre for Collaborative Applied Mathematics
ID Code:1035
Deposited By: Peter Hudston
Deposited On:07 Jan 2011 08:45
Last Modified:29 May 2015 18:43

Repository Staff Only: item control page